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Preface

Wave scattering by bodies, small in comparison with the wavelength, is of

interest in many applications: light scattering by cosmic and other dust,

light scattering in colloidal solutions, scattering of waves in media with

small inhomogeneities, such as holes in metal, for example, ultrasound

mammography, ocean acoustics, etc. In 1871 Rayleigh started his classical

work on wave scattering by small bodies. He understood that the main

input in the far-zone field, scattered by a dielectric body, small in compar-

ison with the wavelenghth λ, is made by the dipole radiation. However, he

did not give methods for calculating this radiation for bodies of arbitrary

shapes. The body is small if ka < 0.1, where k = 2π
λ is the wavenumber,

and a is the characteristic dimension of the body. Practically in some cases

one may consider the body small if ka < 0.2. Thomson (1893) understood

that the main part of the far-zone field, scattered by a small perfectly con-

ducting body, consists not only of the electric dipole radiation, but also

of the magnetic dipole radiation which is of the same order of magnitude.

Many papers and books dealing with the wave scattering from small bodies

and its applications have been published since then.

However only in the author’s works ([85], [112], [113]) have analytic for-

mulas for calculation with arbitrary accuracy of the electric and magnetic

polarizability tensors for bodies of arbitrary shapes been derived. These for-

mulas allow one to calculate with the desired accuracy the dipole radiation

from bodies of arbitrary shapes, and the electric and magnetic polarizability

tensors for these bodies in terms of their geometries and material properties

(dielectric permeability ε, magnetic permittivity μ, and conductivity σ) of

the bodies. Using these formulas the author has derived analytic formulas

for the S-matrix for acoustic and electromagnetic wave scattering by small

bodies of arbitrary shapes. The author has obtained two-sided estimates

vii



viii Preface

for various functionals of practical interest in scattering theory, such as

electrical capacitances of the conductors of arbitrary shapes and elements

of the polarizability tensors of dielectric bodies of arbitrary shapes. These

results allow the author to solve the inverse radiation problem.

Iterative methods for calculating static fields play an important role

in the theory developed in this monograph. These methods are presented

for interior and exterior boundary-value problems and for various bound-

ary conditions. Boundary-value problems are reduced to boundary integral

equations, and these equations are solved by means of iterative processes.

There is a common feature of the static problems we study. Namely, these

problems are reduced to solving Fredholm integral equations at the largest

eigenvalue (smallest characteristic value, which is reciprocal to the eigen-

value) of the corresponding compact integral operator. The right-hand side

of the equation is such that this equation is solvable. The largest eigenvalue

is semisimple, that is, it is a simple pole of the resolvent of the correspond-

ing compact operator. For this class of solvable operator equations at their

largest eigenvalues the author had developed convergent iterative processes

which allow one to solve the correponding equation stably with respect

to small perturbations of the data. The above material is presented in

Chapters 1–7, which are based on monograph [113].

The Fredholm alternative and a characterization of bounded and

unbounded Fredholm operators of zero index are given in Chapter 8. The

dependence on a parameter of the resolvents of analytic and meromorphic

families of Fredholm operators is studied. Our presentation is based on

works ([88], [81], [136]). This presentation is simple, short, and can be used

in courses for graduate students.

Boundary-value problems for elliptic second-order equations are studied

in rough domains, i.e., in domains with non-smooth boundaries, far less

smooth than the Lipschitz boundaries ([103], [104], [30], [31], [107]). These

results are presented in Chapter 9.

Low frequency asymptotics for solutions of exterior boundary-value

problems are obtained (see [121], [133], [127], [142], [87], [90], [101]). These

results are presented in Chapter 10.

The inverse problem of finding small subsurface inhomogeneities from

the scattering data measured on the surface is discussed in ([105], [36]).

These results are presented in Chapter 11.

The Modified Rayleigh Conjecture (MRC) is formulated and proved

([116]). An efficient numerical method for solving obstacle scattering
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problems is proposed and justified mathematically on the basis of MRC

([34], [118], [119], [125], [37]). Part of these results is presented in

Chapter 12.

Methods, optimal with respect to accuracy, for calculating multiple inte-

grals with weakly singular integrands are developed ([10]). These results

are presented in the Appendix.

Most of the problems treated in the book are three-dimensional, because

for two-dimensional problems the specific and often powerful tool of con-

formal mapping is available. The iterative methods have some advantages

over grid methods and, to a certain extent, over variational methods:

(1) they give analytic approximate formulas for the field and for some func-

tionals of the field of practical importance (such as capacitance and

polarizability tensor),

(2) the formulas for the functionals can be used in a computer program for

calculating these functionals for bodies of arbitrary shape,

(3) iterative methods are convenient to use on computers.

From a practical point of view, the above methods reduce solving the

boundary-value problems to calculating some multiple integrals. Of spe-

cial interest is the case of integrands with weak singularities. One of the

main results of the book are analytical approximate formulas for scatter-

ing matrices for small bodies of arbitrary shapes. These formulas answer

many practical questions, for example, how the scattering depends on the

shape of the body or on the boundary conditions, how one calculates the

effective field in a medium consisting of many small particles, and many

other questions. In particular, these formulas allow one to solve the inverse

radiation problem, which can be formulated as follows: If (E,H) is the

field scattered by a small probe placed at the point x in an electromagnetic

field (E0, H0), how does one calculate (E0(x), H0(x)) from knowledge of

the scattered field (E,H)? This is an inverse problem of radiation theory

or inverse radiomeasurements problem.

We also present two-sided variational estimates of capacitances and

polarizability tensors. This book is based mostly on the author’s papers

and results. But the subject is classical and there have been many papers

and books written on this subject. Some of them are cited in the bibliog-

raphy, but the bibliography is incomplete.

Chapters 6, 8–10, 12, and Appendix A can be read independently of

other chapters. Other chapters build on each other: in Chapter 7 results
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from Chapter 5 are used, in Chapters 1–3 the results from Chapter 6

are used, in Chapter 5 the results from Chapters 1–3 are used, and in

Chapter 11 the results from Chapter 7 are used. The basic topic discussed

in the Appendix A is the many-body wave scattering problem for small bod-

ies. Based on the solution to this problem a method for creating materials

with a desired refraction coefficient is formulated.

The many-body wave scattering problem the author solved asymptoti-

cally exactly under the assumption a� d� λ. Here a is the characteristic

size of a small body, d is the minimal distance between neighboring bodies,

and λ is the wavelength. Under this assumption the multiple scattering is

essential.

The practical interest of the author’s results is very high: the materials

with a desired refraction coefficient (for example, materials with negative

refraction and wave-focusing materials) are of obvious interest in practice.

The author has published his results on creating materials with a desired

refraction coefficient in several monographs and many papers cited in these

monographs. Author’s CV, list of publications and a brief description of

scientific results of the author are included. The author has tried to make

the presentation in this book essentially self-contained. The sign � denotes

the end of a proof.
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Introduction

This book addresses largely three-dimensional problems. Scattering prob-

lems for bodies, small in comparison with the wavelength, are reduced to

static problems. Complex variable methods (conformal mappings) for solv-

ing static two-dimensional problems have been widely discussed in the liter-

ature. The problems solvable in closed form are collected in [13], [33], [43],
[58], [143], [71], [73]. The method of separation of variables has been used

to solve the static problems for ellipsoids and its limiting forms (disks, nee-

dles), for a half-plane, wedge, plane with an elliptical aperture, hyperboloid

of revolution, parabaloid of revolution, cone, thin spherical shell, spherical

segment, two conducting spheres, and some other problems. Electrostatic

fields in a flaky (layered) medium with parallel and sectorial boundaries

have been studied [33], [143]. Some of the problems were solved in closed

form using integral equations, e.g., the problems for a disk, spherical shell,

plane with a circular hole, etc. Wiener-Hopf, dual, and singular integral

equations were used [33], [143], [76], [164]. Electrostatic problems for a

finite circular hollow cylinder (tube) were studied in [158] by numerical

methods. The capacitance per unit length of the tube and the polarizabil-

ity of the tube were calculated. The authors reduced the integral equation

for the surface charge to an infinite system of linear algebraic equations

and solved the truncated system on a computer. Their method depends

heavily on the particular geometry of the problem and does not allow one

to handle any local perturbations of the shape of the tube. In [68] the

variational methods of Ritz, Trefftz, the Galerkin method, and the grid

method are discussed in connection with the static problems. However,

no specific properties of these problems are used. These methods are pre-

sented in a more general setting in [53], [66]. In practice, these methods

xvii
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are time-consuming, and variational methods in three-dimensional static

problems probably have some advantages over the grid method. A vast

literature exists on the calculation of the capacitances of perfect conduc-

tors [43], [79]. In [43] there is a reference section which gives the capaci-

tances of conductors of certain shapes. In [78], [79] a systematic exposition

of variational methods for estimation of the capacitances and other func-

tionals of practical interest is given. In [153] there are some programs

for calculating the two-dimensional static fields using integral equations

method.

In [148] some geometrical properties of the lines of electrical field

strength are used for approximate calculations of the field. This approach

is empirical.

One of the objectives of this book is to present systematically the usage

of integral equations for calculating static fields and some practically use-

ful functionals of these fields, in particular, capacitances and polarizability

tensors of bodies of arbitrary shape. The method gives approximate analyt-

ical formulas for calculations of these functionals with the desired accuracy.

These formulas can be used to construct a computer program for calcu-

lating capacitances and polarizability tensors. The many-body problems

are also discussed as well as the problems for flaky-homogeneous bodies,

e.g., coated particles. Two-sided variational estimates of capacitances and

polarizability tensors are given. The problems for open thin metallic screens

are considered as well as those for perfect magnetic films. Calculating the

magnetic polarizability of perfect magnetic films is important because such

films are used as memory elements of computers. The above-mentioned for-

mulas for capacitances and polarizhbility tensors allow one to give approx-

imate analytical formulas for the scattering matrix in the problem of wave

scattering by small bodies of arbitrary shape. This is done for scalar and

electromagnetic waves. The dependence of the scattering matrix on the

boundary conditions on the surface of the scatterer is investigated. The

wave scattering in a medium consisting of many small particles is studied

and equations for the effective (self-consistent) field in such a medium are

derived. This makes it possible to discuss the inverse problem of determin-

ing the properties of such a medium from knowledge of the waves scattered

by this medium.

The theory of wave scattering by small bodies was originated by

Rayleigh (1871), who studied various aspects of this theory until his death

in 1919. During the last century many papers were published in this field,
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but the first analytical approximate formulas for polarizability tensors and

the scattering matrix were derived in [110], [84], [95], [132] and summarized

in the monograph [143].

Here these and other results are presented systematically. The author

hopes that these results can be used by engineers, physicists, and persons

interested in atmospheric and ocean sciences, radiophysics, and colloidal

chemistry. Radiowave scattering by rain and hail; light scattering by cosmic

dust, muddy water, and colloidal solutions; methods of nondestructive con-

trol; ultrasound mammography; detection of mines in the water or ground;

finding small holes in metals; and radiomeasurement techniques are just a

few examples of many possible applications of the theory of wave scattering

by small bodies of arbitrary shapes.

In addition to the theory of wave scattering by small bodies, the follow-

ing topics are discussed:

(a) the Modified Rayleigh Conjecture (MRC) and its applications to solving

obstacle scattering problems [116], [34], [118], [119], [125],

(b) a characterization of Fredholm operators with index zero and the singu-

larities of the resolvent of analytic Fredholm operator-functions, [136],
[88], [81],

(c) boundary-value and scattering problems in rough domains (less smooth

than Lipschitz domains), [104], [31], [30],

(d) low-frequency behavior of solutions to operator equations and solutions

to boundary-value problems, [87], [90], [108], [133],

(e) finding small subsurface inhomogeneities from scattering data, [105],
[36], [107],

(f) wave scattering by many small bodies, [146], [113],

(g) optimal methods for calculation of weakly singular multidimensional

integrals, [10].

The structure of the book is explained in the table of contents. A modest

background in analysis is required from the reader. The book is essentially

self-contained. There are new mathematical results in the book, but the

book is addressed not only to mathematicians, but to a wide audience that

applies mathematics. This audience includes numerical analysts, physi-

cists, engineers, and graduate students. The book can be used in graduate

courses for students in several areas of science, including integral equations

and their applications, numerical mathematics, wave scattering, electrody-

namics, and PDE.
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This monograph is based mainly on the author’s papers and some mate-

rial from his earlier monographs [113], [133], [143], [120]. Chapter 9 is based

on [144], [104], [31], and the presentation follows closely that in [31]. The

Appendix is based on [10].

The author thanks Springer Verlag, Kluwer Academic/Springer and

other publishers for permissions to use the material from his published

papers and books.



Chapter 1

Basic Problems

1.1 Statement of Electrostatic Problems for Perfect

Conductors

1. The basic equations of electrostatics are well known [58]:

curlE = 0, divD = ρ, D = εE, (1.1)

where E is the electric field, D is the induction, ρ(x) is the charge distri-

bution, and ε is the dielectric constant of the medium. If the medium is

homogeneous and isotropic, then ε is constant; if it is isotropic but unho-

mogeneous, then ε = ε(x), x = (x1, x2, x3). In the general case ε = εij(x),

1 ≤ i, j ≤ 3, is a tensor. The boundary condition on the surface Γ of a

conductor is of the form

Et|Γ = N × E|Γ = 0, (1.2)

where N is the unit outer normal to Γ. If σ is the surface charge distribution

then

DN = (D,N) = σ. (1.3)

The vectors E and D are to be finite and can have discontinuities only

on the surfaces of discontinuity of ε(x), i.e., on the surfaces which are the

boundaries of domains with different electrical properties (interface sur-

faces). The boundary conditions on such surfaces are

E1t = E2t, D1N = D2N , (1.4)

where 1 and 2 stand for the first and second medium, respectively. A

perfect conductor in electrostatics is a body with ε = +∞. Let us define

1



2 Basic Problems

an insulator in electrostatics as a body with ε = 0, i.e., on its surface

DN |Γ = 0. (1.5)

This definition is useful because a superconductor behaves in a magnetic

field H like an insulator in the electric field E = H . Indeed, on the surface

of the superconductor the boundary condition

BN |Γ = 0 (1.6)

holds, where B is the magnetic induction [58].

2. Many problems of practical interest in quasistatic electrodynamics

can be reduced to static problems.

For example, let a conductor Ω be placed in a harmonic electromagnetic

field. Let the wave length λ of the field be much larger than the character-

istic dimension a of Ω, λ � a. In practice λ > 0.2a is often enough. If the

depth δ of the skin layer is small, δ � a, then the calculation of the field

scattered by this body can be reduced to the static problem

divB = 0, curlB = 0 in Ωe, (1.7)

BN |Γ = −B0N |Γ, B(∞) = 0. (1.8)

Here Ωe is the exterior of the domain Ω, B0 is the magnetic induction at

the location of Ω. One can assume that B0 is constant since a � λ, i.e.,

the exterior field does not change significantly within the distance a. It is

clear that the problem of (1.7)-(1.8) is equivalent (formally) to the problem

of the insulator in the exterior electrostatic field E0 = B0.

It is worthwhile to mention that many problems of thermostatics, hy-

drodynamics, and elastostatics can be reduced to static problems similar

to the above.

3. Let us formulate three basic problems of electrostatics.

Problem 1.1 A conductor is placed in a given electrostatic field. Find

the charge distribution σ induced on its surface.

Problem 1.2 A conductor has total charge Q. Find the surface charge

distribution σ.

Problem 1.3 A conductor is charged to a potential V . Find σ.

In these problems the conductor may be a single body or a system of bodies.

4. In most books on electrostatics the third boundary condition is not

discussed. Nevertheless some practical problems (such as the calculation of
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the resistance of linearly polarizable electrodes, and the calculation of the

skin effect) can be reduced to the static boundary value problem with the

third boundary condition.

5. Let us formulate the basic problems of electrostatics as problems of

the potential theory. Let ε be a constant. Then from (1.1) it follows that

E = −�φ, � φ = −ρ. (1.9)

In the domain free of charge one has

� φ = 0. (1.10)

If the given exterior field is E0 = −�φ0, then

φ = φ0 + v, (1.11)

and v satisfies (1.10). The boundary condition (1.2) takes the form

φ|Γ = const, (1.12)

while (1.3) takes the form

−ε ∂φ
∂N

∣∣∣∣
Γ

= σ. (1.13)

Problem 1.1 can be formulated as follows:

Find the solution φ of (1.10) of the form (1.11), subject to condition

(1.12), such that

v(∞) = 0 and

∫
Γ

∂φ

∂N
ds = 0. (1.14)

Condition (1.14) means that the total surface charge on the conductor is

zero (the electroneutrality condition). Since
∫
Γ
(∂φ0/∂N)ds = 0, condition

(1.14) implies: ∫
Γ

∂v

∂N
ds = 0. (1.15)

Problem 1.2 can be formulated as follows:

Find the solution φ of (1.10) subject to (1.12) and such that

−ε
∫
Γ

∂φ

∂N
ds = Q, φ(∞) = 0. (1.16)

The constant in condition (1.12) should be found in the process of solving

Problem 1.1 and Problem 1.2. This constant is the potential of the
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conductor. It is known and easy to prove that Problem 1.1 and Prob-

lem 1.2 have unique solutions. Indeed, the corresponding homogeneous

problems are � φ = 0 in Ωe, φ|Γ = 0, φ(∞) = 0, and � φ = 0 in Ωe,

−ε ∂φ∂N |Γ = 0, φ(∞) = 0. The only solution to the first problem is φ = 0

by the maximum principle, and the only solution to the second problem is

φ = 0 by the strong maximum principle ([29]).

6. If the conductor is a thin unclosed metallic screen, then the edge

condition must be satisfied. Let F denote the screen and L denote its edge.

Then the edge condition can be written as

|φ(x)| ∼ {g(x)}1/2, g(x) ≡ min
t∈L

|x− t|. (1.17)

The function g(x) is the distance from the point x to the edge. From (1.17)

it follows that

|E| = | − �φ| ∼ {g(x)}−1/2, σ(s) ∼ {g(s)}−1/2, (1.18)

where s ∈ F . Condition (1.17) is easy to understand if one notes that the

potential near the edge of the wedge behaves like rν sin(νθ), where (r, θ)

are polar coordinates, ν = (2− θ0π
−1)−1, and θ0 is the angle of the wedge.

If θ0 = 0 (this is the case of the screen) then ν = 0.5 and one obtains (1.17).

1.2 Statement of the Basic Problem for Dielectric Bodies

1. Let a dielectric body Ω with the dielectric constant εi be placed in a

medium with the dielectric constant εe. A basic electrostatic problem is

to find the electric field which occurs if one places the body in the given

electrostatic field E0 = −�φ0. This problem can be formulated as

� φ = 0 in Ω and Ωe, (1.19)

εi

(
∂φ

∂N

)
i

= εe

(
∂φ

∂N

)
e

on Γ, (1.20)

φ = φ0 + v, v(∞) = 0. (1.21)

Here and below (∂φ/∂N)i(e) are the limiting values on Γ of the normal

derivatives in the interior (exterior) domains.

For v one has the problem

� v = 0 in Ω and inΩe, (1.22)
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εi

(
∂v

∂N

)
i

= εe

(
∂v

∂N

)
e

+
(
εe − εi

)(∂φ0
∂N

)
on Γ, v(∞) = 0. (1.23)

If the body Ω is inhomogeneous, then

div
(
ε(x)�φ

)
= 0 in Ω. (1.24)

2. Let us give an example of a practical problem which leads to a

boundary value problem with the third boundary condition(
∂φ

∂N
+ hφ

)∣∣∣∣
Γ

= f, h = const . (1.25)

Suppose that on the surface of a perfect conductor there is a thin film,

e.g., an oxide film. Let ψ be the potential of the conductor and let φ be

the potential of the exterior surface of the film. In electrochemistry it is

assumed that φ−ψ is proportional to the current j = −γ�φ, where γ is the

specific conductivity of the film. Therefore φ − ψ = −bγ(∂φ/∂N), where

the constant b is the coefficient of proportionality. This condition is clearly

of the form (1.25) with h = (bγ)−1, f = −hψ. The same condition will

appear in the problem with an impedance surface or with a surface covered

by a thin dielectric film.

In electrochemistry the surfaces of the metallic electrodes are not

equipotential because of the electrochemical polarizations. The potential

of the electrodes depends on the normal component of the electric current.

If this dependence is linear one gets condition (1.25).

1.3 Reduction of the Basic Problems to Fredholm’s

Integral Equations of the Second Kind

1. Let us state several formulas from potential theory which will be used

below. Let

v(x) =

∫
Γ

σ(t)dt

4πrxt
, w(x) =

∫
Γ

∂

∂Nt

1

4πrxt
μ(t)dt, (1.26)

where rxt = |x − t| and Nt is the exterior (outer) unit normal to Γ at the

point t. Then (
∂v

∂N

)
ie

=
Aσ ± σ

2
, wie =

A∗μ∓ μ

2
, (1.27)
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where the upper (lower) sign corresponds to i (e), and

Aσ =

∫
Γ

σ(t)
∂

∂Ns

1

2πrst
dt, A∗μ =

∫
Γ

μ(t)
∂

∂Nt

1

2πrst
dt, (1.28)

where Γ is the surface of Ω. Unless otherwise specified we assume that Γ is

smooth.

In Chapter 9 a wide class of non-smooth (rough)boundaries is consid-

ered. This class includes Lioschitz boundaries as a proper subclass.

Note that

� v = 0, � w = 0 in Ω and Ωe. (1.29)

Formulas (1.26)–(1.29) are well known [38]. For smooth surfaces the fol-

lowing formula ( [38]) holds:(
∂w

∂N

)
i

=

(
∂w

∂N

)
e

. (1.30)

The above properties of the potential hold if the densities σ and μ are

continuous. If the densities are Hölder continuous, the derivatives of the

potentials have additional smoothness properties, which we do not state

because they will not be used. A function f is called Hölder continuous if

for some constants c > 0 and α, 0 < α ≤ 1,∣∣f(t)− f(s)
∣∣ ≤ c|t− s|α.

The potential theory is developed for Lipschitz surfaces([20], [157]).

2. In order to reduce Problem 1.1 from Section 1.1 to Fredholm’s

integral equation, let us look for a solution of this problem of the form

φ = φ0 +

∫
Γ

σ(t)dt

4πεerxt
. (1.31)

The unknown function σ(t) has physical interpretation as the surface charge

distribution. The function φ in (1.31) satisfies equation (1.10), condition

(1.11), and the first condition in (1.14). Substitution of (1.31) into (1.13)

with ε = εe, yields

σ = −Aσ − 2εe
∂φ0
∂N

,

∫
Γ

σ dt = 0. (1.32)

The second equation is condition (1.15). If ε 
= εe and the medium has

dielectric constant ε, then

σε =
εe
ε
σ (1.33)
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where σε is the surface charge distribution in this new problem and σ is

the solution of (1.32), i.e., the surface charge distribution in the original

problem.

Exercise 1.1 Prove this statement.

It is known [38] that every solution of the equation σ = −Aσ is of the

form σ = constω(t), where ω(t) ≥ 0,
∫
Γ
ω(t)dt > 0. The function ω(t)

is the equilibrium charge distribution on the surface Γ of the conductor.

Every solution of the adjoint equation μ = −A∗μ is of the form μ = const.

From this and from Fredholm’s alternative it follows that problem (1.32)

has a unique solution. Existence is guaranteed since
∫
Γ
(∂φ0/∂N)ds = 0,

while uniqueness follows from the second condition in (1.32).

3. Let us look for a solution of Problem 1.2 of the form

φ =

∫
Γ

σ(t)dt

4πεerst
, (1.34)

where

σ = −Aσ,
∫
Γ

σ dt = Q, (1.35)

Problem (1.35) has the unique solution

σ = Qω(s), (1.36)

where ω(s) is the solution of (1.35) corresponding to Q = 1 i.e., an equi-

librium charge distribution of the total charge Q = 1 on the surface Γ of

the conductor. It is easy to prove that every solution of the first equation

(1.35) is a constant multiple of ω(t). Indeed, if ω1 and ω2 are two solutions

to equation (1.35), then ω1 − λω2 solves this equation for any λ = const.

Choose λ so that
∫
Γ
(ω1 − λω2)ds = 0. Then ω1 = λω2. Indeed, if σ solves

(1.35), then v(σ) = const in D, v = const on Γ, and σ = − ∂v
∂Ne

> 0. Thus,

if
∫
Γ
σdt = 0, then σ = 0. Our argument proves that dimN(I + A) = 1,

where N(B) := {u : Bu = 0} is the null-space of an operator B.

4. Let us now consider the interior and exterior problems

� φ = 0 in Ω,
∂φ

∂N
+ hφ|Γ = f, (1.37)

� φ = 0 in Ωe,
∂φ

∂N
− hu|Γ = f, (1.38)
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where h = h1 + ih2, h1 ≥ 0, h2 ≤ 0, |h| > 0, h = const. It is easy to prove

that problems (1.37) and (1.38) have unique solutions. If one looks for a

solution of the form φ = v, where v is defined in (1.26), then the density σ

of the potential v satisfies the equation

σ + Tσ = −Aσ + 2f (1.39)

for problem (1.37), and

σ + Tσ = Aσ − 2f (1.40)

for problem (1.38). Here A is defined in (1.28) and

Tσ ≡ h

∫
Γ

σ dt

4πrst
. (1.41)

For the Dirichlet problems

� u = 0 in Ω, u|Γ = f, (1.42)

� u = 0 in Ωe, u|Γ = f, (1.43)

one looks for the solution of the form u = w, where w is defined in (1.26),

and for μ obtains the equations

μ = A∗μ− 2f, (1.44)

μ = −A∗μ+ 2f, (1.45)

respectively.

5. In order to reduce the basic problem of electrostatics for dielectric

bodies to integral equations let us look for a solution of the form (1.31).

Using (1.27) and the boundary condition (1.23) one obtains the equation

σ = −γAσ − 2γεe
∂φ0
∂N

, γ =
εi − εe
εi + εe

, (1.46)

where εi is the dielectric constant of the body. If εi = ∞ then γ = 1.

This is the case of a perfect conductor and in this case (1.46) is identical to

(1.32). If εi = 0 then γ = −1. This is the case of an insulator and in this

case (1.46) becomes

σ = Aσ + 2εe
∂φ0
∂N

. (1.47)
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6. If p conductors are placed in the exterior field E0 = −�φ, then one

looks for a potential of the form

φ = φ0 +

p∑
j=1

∫
Γ

σj(t)

4πεerxt
dt. (1.48)

From (1.48) and the boundary conditions

−εe ∂φ
∂N

∣∣∣∣
Γm

= σm, 1 ≤ m ≤ p, (1.49)

one obtains the system of integral equations

σj
(
tj
)
=

p∑
m=1,m �=j

Tjmσm −Ajσj − 2εe
∂φ0
∂N

, 1 ≤ j ≤ p, (1.50)

where

Tjmσm =

∫
Γm

∂

∂Ntj

1

2πrtjtm
σm
(
tm
)
dtm, (1.51)

Ajσj =

∫
Γj

∂

∂Ntj

1

2πrtjsj
σj
(
sj
)
dsj , (1.52)

and the electroneutrality conditions should be satisfied∫
Γj

σj(t)dt = 0, 1 ≤ j ≤ p. (1.53)

7. If p dielectric bodies are placed in the exterior field E0 = −�φ0, then
the potential is of the form (1.48) and from the boundary conditions

εj

(
∂φ

∂N

)
i

= εe

(
∂φ

∂N

)
e

on Γj , 1 ≤ j ≤ p, (1.54)

one obtains the system of integral equations

σj
(
tj
)
= −kj

p∑
m=1,m �=j

Tjmσm − kjAjσj − 2kjεe
∂φ0
∂NIj

, (1.55)

where

kj :=
εj − εe
εj + εe

, 1 ≤ j ≤ p, (1.56)
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εj is the dielectric constant of the jth body, Tjm and Aj are defined in (1.51)

and (1.52), and, unless for some j0 one has εj0 = ∞, there are no addi-

tional conditions on σj . Otherwise one should impose the electroneutrality

condition (1.53) on σj0 .

8. Let us consider a flaky-homogeneous (layered) body placed in the

exterior field E0 = −�φ0. Taking again the potential of the form (1.48)

and using the boundary conditions

εj

(
∂φ

∂N

)
i

= εj−1

(
∂φ

∂N

)
e

on Γj, (1.57)

one finds the system of integral equations

σj
(
tj
)
= −γj

p∑
m=1,m �=j

Tjmσm − γjAjσj − 2γjεe
∂φ0
∂Ntj

, (1.58)

where

γj =
εj − εj−1

εj + εj−1
(1.59)

and Tjm, Aj are defined in (1.51), (1.52).

1.4 Reduction of the Static Problems to Fredholm’s

Integral Equations of the First Kind

If the body is an open thin metallic screen it is not easy to reduce the

static problems to a convenient Fredholm equation of the second kind, see

e.g. [24]. Nevertheless it is easy to obtain Fredholm’s integral equations of

the first kind for the problem and to solve these equations by an iterative

process.

Let us consider Problem 1.1 from Section 1.1. Looking for a poten-

tial of the form (1.31), using boundary condition (1.12) and denoting the

constant potential on the surface of the conductor by V one gets

∫
Γ

σ(t)dt

4πεerst
= V − φ0, s ∈ Γ. (1.60)

The constant V is to be found from the condition∫
Γ

σ(t)dt = 0. (1.61)
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Problem 1.2 from Section 1.1 leads in a similar way to the equation∫
Γ

σ(t)dt

4πεerst
= V, s ∈ Γ, (1.62)

which is uniquely solvable if V is given. If the constant V is not given, but

the total charge Q is given: ∫
Γ

σ dt = Q, (1.63)

and if η(t) solves (1.62) with V = 1, then problem (1.62)-(1.63) has the

solution

σ(t) =
Q

Q1
η(t), (1.64)

where

Q1 =

∫
Γ

η(t)dt. (1.65)

Problem 1.3 from Section 1.1 is equivalent to equation (1.62) without

additional conditions.
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Chapter 2

Iterative Processes for Solving
Fredholm’s Integral Equations for

Static Problems

2.1 An Iterative Process for Solving the Problem of

Equilibrium Charge Distribution and Charge

Distribution on a Conductor Placed in an Exterior

Static Field

1. In Section 1.3, Problem 1.1 from Section 1.1 was reduced to problem

(1.32). It is known [38] that the operator A in (1.32) is compact in L2(Γ)

and in C(Γ) provided that Γ is smooth (it is sufficient to assume that the

equation of the surface in the local coordinates is x3 = f(x1, x2) and �f
is Hölder continuous). It is also known [38] that λ = −1 is the smallest

characteristic value of A which is simple. This means that λ = −1 is a

simple pole of the resolvent (A − λI)−1 and the corresponding null space

is one-dimensional, i.e., every solution of the equation σ = −Aσ is of the

form σ = constω(t), where ω(t) is the solution normalized by the condition∫
Γ
ω dt = 1. Let G1 denote the null space of the operator I+A

∗, where A∗ is
defined in (1.28). It is known [38] and can be verified directly that μ = 1 is a

solution of the equation μ = −A∗μ. By the Fredholm alternative G1 is one

dimensional. Let G⊥
1 be the orthogonal complement to G1 in H = L2(Γ).

Then G⊥
1 is the set of functions satisfying the condition

∫
Γ
σ dt = 0. If φ0

is the electrostatic potential then
∫
Γ
(∂φ0/∂N)dt = 0. The theoretical basis

for the iterative processes of this chapter is given in Chapter 6. In order

to apply Theorem 6.1 from Section 6.1 one has to check that equation σ =

−Aσ has only the trivial solution in G⊥
1 . Every solution to this equation

is of the form σ = cω(t), c = const,
∫
Γ ω(t)dt > 0. Therefore

∫
Γ σ dt = 0

implies that c = 0 and σ = 0. Theorem 6.1 and the above argument show

that the following theorem holds.

Theorem 2.1 Problem 1.1 in Section 1.1 has a unique solution σ, given

13
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by the iterative process

σn+1 = −Aσn − 2εe
∂φ0
∂N

, σ0 = −2εe
∂φ0
∂N

, σ = lim
n→∞σn. (2.1)

This process converges as a geometrical series with ratio q, 0 < q < 1,

where q depends only on the shape of Γ.

Remark 2.1 If Γ is a sphere then q = 1/3. The number q = |λ1λ−1
2 |,

according to Theorem 6.1. Here λ1, λ2, λ3, . . . are the characteristic values

of A (i.e., φj = λjAφj for some φj �= 0) numbered so that |λ1| < |λ2| ≤
|λ3| ≤ · · · . One can calculate λ1 and λ2, numerically using the methods

given in [44], [53], and find q.

2. Let us solve Problem 1.2 by the iterative process given in Theorem

6.2. Problem 1.2 was reduced to problem (1.35). Its solution is of the form

(1.36) and
∫
Γ
ω dt = 1. Since f = 1 satisfies the condition fG1 �= 0 where

fG1 is the projection of f onto G1 (note that G1 is spanned by the function

ω) one can use Theorem 6.2 from Section 6.1. This yields

Theorem 2.2 Problem 1.2 has a unique solution σ, given by the iterative

process

σn+1 = −Aσn, σ0 = Q/S, σ = lim
n→∞ σn, (2.2)

where s = meas Γ. The process converges at the rate given in Theorem 2.1.

Remark 2.2 It is easily seen that∫
Γ

σndt =

∫
Γ

σn−1dt = · · · =
∫
Γ

σ0dt = Q. (2.3)

Indeed

−
∫
Γ

Aσ dt = −
∫
Γ

∫
Γ

∂

∂Nt

1

2πrst
σ(s)ds dt =

∫
Γ

σ(s)×
{∫

Γ

− ∂

∂Nt

1

2πrst
dt

}
ds =

∫
Γ

σ(s)ds

Here we have used the known [38] formula

−
∫
Γ

∂

∂Nt

1

2πrst
dt = 1.

Relation (2.3) means that the iterative process (2.2) redistributes the fixed

total charge on the surface, thus causing the surface change to approach

the equilibrium distribution.
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3. Suppose Problem 1.2 is solved and ω(t) has been found. Then

it is easy to solve Problem 1.3. Indeed, let V0 be the potential of the

conductor with Q = 1, i.e.,
∫
Γ

ω(t)

4πεerst
= V0.

Then the solution of Problem 1.3 is

σ(t) = V V −1
0 ω(t).

One can verify this directly.

Exercise 2.1 Do it.

2.2 An Iterative Process for Solving the Problem for

Dielectric Bodies in an Exterior Static Field

1. The above problem is reduced in Section 1.3 to equation (1.46), where

−1 < γ < 1, provided that εi > 0, εe > 0, εi �= 0, and εi �= ∞. It was al-

ready stated that all the characteristic values of A lie in the domain |λ| ≥ 1.

Therefore one can use Theorem 6.4 from Section 6.1. This Theorem implies

the existence and uniqueness of solution of (1.46) and the convergence of

the iterative process

σn+1 = −γAσn − 2γεe
∂φ0
∂N

, σ0 = σ0; σ = lim
n→∞σn, (2.4)

where σ0 ∈ L2(Γ) is arbitrary, to the solution of (1.46). The rate of con-

vergence is that of the geometrical series with ratio q, 0 < q < |γ|−1. If

σ0 = −2γεe(∂φ0/∂N) then process (2.4) converges for −1 ≤ γ ≤ 1 and

q ≤ |λ2|−1, where λ2 is the second characteristic value of A.

2. Suppose a flaky-homogeneous body described in Section 1.3 is placed

in the exterior static field with the potential φ0. The system of integral

equations for this problem is (1.58).

Theorem 2.3 The system (1.58) has a unique solution given by the it-

erative process

σj = lim
n→∞σ

(n)
j ,

σ
(n+1)
j (tj) = −γjΣpm=1,m �=jTjmσ

(n)
m − γjAjσ

(n)
j − 2γjεe

∂φ0
∂Ntj

,
(2.5)
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σ
(0)
j = −2γjεe

∂φ0
∂Ntj

, 1 ≤ j ≤ p, (2.6)

which converges as a geometrical series with ratio q, 0 < q < 1, where q

depends only on the shapes of Γj.

Proof. Let us write (1.58) as

σ = −Bσ + f, (2.7)

where

σ =
(
σ1, . . . , σp

)
, f =

(
− 2εeγ1

∂φ0
∂Nt1

, . . . ,−2εeγp
∂φ0
∂Ntp

)
,

and B is the matrix operator of the form

B =

⎛
⎝γ1A1 γ1T12 · · · γ1T1p
. . . . . . . . . . . . . . . . . . . .

γpTp1 γpTp2 · · · γpAp

⎞
⎠ . (2.8)

This operator acts in the space H = L2(Γ) of vector-valued functions with

inner product

(σ, ω) =

p∑
j=1

∫
Γj

σj(t)ωj(t)dt. (2.9)

In order to prove Theorem 2.1 it is sufficient to show that the equation

σ = −λBσ (2.10)

has only trivial solution for |λ| ≤ 1 (see Theorem 6.4 from Section 6.1).

Suppose |λ| ≤ 1 and σ is a nontrivial solution of (2.10). Let us rewrite

(2.10) as

σj = −λγj
(
Ajσj +

p∑
m=1,m �=j

Tjmσm

)
. (2.11)

If

v =

p∑
j=1

∫
Γj

σjdt

4πεerxt
,

then (
∂v

∂Ni
− ∂v

∂Ne

)∣∣∣∣
Γj

= −λγj
(
∂v

∂Ni
+

∂v

∂Ne

)∣∣∣∣
Γj

, 1 ≤ j ≤ p,
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and

(
1 + λγj

) ∂v
∂Ni

=
(
1− λγj

) ∂v
∂Ne

on Γj , 1 ≤ j ≤ p, (2.12)

Let D0 be the exterior domain with boundary Γ1, Dp be the interior domain

with boundary Γp, and Dj be the domain with boundary Γj ∪ Γj+1. Let

aj , 1 ≤ j ≤ p, be arbitrary constants. Consider the identity

p∑
j=0

aj

∫
Dj

|�v|2dx =

p∑
j=1

∫
Γj

v̄j

(
aj

∂v

∂Ni
− aj−1

∂v

∂Ne

)
ds. (2.13)

From (2.12) and (2.13) it follows that

p∑
j=0

aj

∫
Dj

|�v|2dx =

p∑
j=1

∫
Γj

v̄

(
aj − aj−1

1 + λγj
1− λγj

)
∂v

∂Ni
ds. (2.14)

If |γj | < 1 and |λ| ≤ 1 then |λγj | < 1. Let us set

a0 = εe, aj = aj−1
1 + λγj
1− λγj

, 1 ≤ j ≤ p.

Then (2.14) shows that v ≡ 0 and therefore σ = 0, i.e., σj = 0, 1 ≤ j ≤ p.

If |λ| = 1, λ �= 1 then λγj �= 1 and the same argument shows that σ = 0.

If λ = 1 and λj0 = 1 then εj0 = ∞ and v|Γj = const. In this case one

is interested in the potential in the domain exterior to Γj0 and derives an

identity similar to (2.14), namely

j0−1∑
j=0

aj

∫
Dj

|�v|2dx

=

j0−1∑
j=1

∫
Γj

v̄

(
aj

∂v

∂Ni
− aj−1

∂v

∂Ne

)
ds+

∫
Γj0

v̄aj0−1
∂v

∂Ne
ds

=

j0−1∑
j=1

∫
Γj

v̄

(
aj − aj−1

1 + λγj
1− λγj

∂v

∂Ni

)
ds− aj0−1

∫
Γj0

v̄
∂v

∂Ne
ds.

(2.15)

Because of the electroneutrality condition∫
Γj0

∂v

∂Ne
ds = 0, (2.16)

and the boundary condition on the surface of the perfect conductor v|Γj0
=

const, the last integral in (2.15) vanishes. Therefore it follows from (2.15)
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that σ ≡ 0 provided that (2.16) holds. Note that (2.16) is equivalent to the

equality ∫
Γj0

σj0ds = 0. (2.17)

Let us prove that λ = −1 is a semisimple characteristic value of the operator

B. This will be important for construction of iterative methods of solution

of equation (2.7) (cf. Theorem 6.1 in Chapter 6). A characteristic number

λ is called semisimple if the equation σ = λBσ has nontrivial solutions and

the equation u = λBu + σ has no solution for any nonzero σ which is a

solution of σ = λBσ.

In Chapter 6 it is proved that if B is compact then λ is semisimple if

and only if it is a simple pole of the resolvent (I − zB)−1.

Suppose that

σ = −Bσ, σ �= 0, u = −Bu+ σ. (2.18)

Let
∫
Γj
σjdt = Qj,

∫
Γj
ujdt = qj . Note that [38]

∫
Γ

∂

∂Nt

1

2πrxt
dt =

⎧⎪⎪⎨
⎪⎪⎩
0, x /∈ D,

−1, x ∈ Γ,

−2, x ∈ D,

(2.19)

where D is a bounded domain with a smooth boundary Γ. Integrating

(2.18) over Γ yields

qj = γjqj + 2γj
∑
m>j

qm +Qj , j = 1, 2, . . . , j0, (2.20)

because∫
Γj

dt Tjmσm =

∫
Γj

dt

∫
Γm

∂

∂Nt

1

2πrts
σm(s)ds

=

∫
Γm

ds σm(s)

∫
Γj

dt
∂

∂Nt

1

2πrts
= qm

{
0, m < j

−2, m > j
.

(2.21)

Therefore (2.20) is a linear system with an upper triangular matrix. We

have already showed that if
∫
Γ
σj0dt = Qj0 = 0 then σ ≡ 0. Since we

assume that σ �≡ 0 we have Qj0 �= 0. Since γj0 = 1 the last equation in

(2.20) reads qj0 = qj0 +Qj0 . Thus Qj0 = 0 and σ ≡ 0. This contradicts the
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assumption that σ �≡ 0. Therefore λ = −1 is a semisimple characteristic

value of B.

The statement of Theorem 2.3 follows now from Theorem 6.1. Note that

we need this theorem only in the case in which εj0 = ∞ because in this case

−1 is the characteristic value of B. If each εj is finite then the operator B

has no characteristic values in the unit disk |λ| ≤ 1 and the iterative process

(2.5) converges for any initial approximation, not necessarily satisfying the

condition ∫
Γ

f dt = 0. (2.22)

This condition is satisfied by the initial approximation (2.6). �
3. Let us consider an iterative process for solving the many-body prob-

lem in the exterior static field.

In Section 1.3 this problem was reduced to system (1.55) in the case of

dielectric bodies and to system (1.50) and conditions (1.53) for the case of

perfect conductors. Since the case of perfect conductors can be treated as

an instance of dielectric bodies with εj = ∞, let us consider system (1.55)

and rewrite it as an operator equation

σ = −B̃σ + f, (2.23)

where

B̃jm = kjTjm
(
1− δjm

)
+ kjδjmAj , fj = −2kjεe

∂φ0
∂Ntj

, (2.24)

and kj is defined in (1.56).

Theorem 2.4 If |kj | < 1, 1 ≤ j ≤ p, then equation (2.23) has a unique

solution σ for any f ∈ H = L2(Γ), given by the iterative process

σn+1 = −B̃σn + f, σ = lim
n→∞ σn, (2.25)

where σ0 ∈ H is arbitrary. Process (2.25) converges no more slowly than

a convergent geometrical series. If kj = 1 for some j then equation (2.23)

has a solution for any f ∈ H such that∫
Γ

f ds = 0. (2.26)

This solution satisfies the condition∫
Γ

σ dt = 0. (2.27)
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There is only one solution of equation (2.23) with f satisfying (2.26) in

the class of functions σ ∈ H satisfying (2.27). This solution can be found by

the iterative process (2.25) where σ0 satisfies condition (2.27), e.g., σ0 = f .

The process converges at least as fast as a convergent geometrical series.

A proof of Theorem 2.4 is similar to the proof of Theorem 2.3 and can

be left to the reader as an exercise.

2.3 A Stable Iterative Process for Finding the

Equilibrium Charge Distribution

The iterative process for solution of this problem is given in Theorem 2.2.

However this process is unstable in the following sense. Consider the process

with perturbations

σn+1 = −Aσn + εn,
∥∥εn∥∥ ≤ ε. (2.28)

Since −1 is a characteristic value of A the operator (I+A)−1 is not defined

everywhere in H and the process (2.28) can diverge. For example if εn = f ,

‖f‖ < ε,
∫
Γ
f ds > 0, and σ0 = f , then process (2.28) diverges. Indeed, in

this case σn =
∑n
m=0(−1)mAmf . The Neumann series

∑∞
m=0(−1)mAmf

does not converge for the elements f ∈ N(I + A), where N(I + A) is the

null space of the operator I +A.

We have already seen that σ ∈ N(I + A) has the property
∫
Γ σ dt �=

0. Therefore every f such that
∫
Γ f dt �= 0 can be represented as f =

cσ + f1, where c = const �= 0 and
∫
Γ f1dt = 0. Since −1 is a semisimple

characteristic value the operator (I + A)−1 is defined at f1 and is not

defined at σ. Hence (I+A)−1 is not defined at f and σn does not converge

as n→ ∞. One can verify this by a direct calculation using the identity

−
∫
Γ

Aσ dt = −
∫
Γ

σ dt (2.29)

which is valid for any σ ∈ H (see Remark 2.2 in Section 2.1). Integrating

σn over Γ yields
∫
Γ σndt = q(n + 1), where q =

∫
Γ f dt �= 0. Therefore∫

Γ
σndt → ∞ and σn does not converge in H . This simple argument gives

the rate of divergence of the process (2.28).

This motivates the problem of constructing a stable iterative process

for solving the problem (1.35). Let Q = 1 in (1.35), S = meas Γ, φ = S−1,
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ω = φ+ h. Then from the equation ω = −Aω it follows that

h = −Ah+ F, F = −φ−Aφ,

∫
Γ

φdt = 1. (2.30)

Note that from (2.29) it follows that∫
Γ

F dt = 0. (2.31)

The following theorem gives a stable iterative process for solution of (2.30).

This theorem is a particular case of the abstract Theorem 6.2.

Theorem 2.5 The iterative process

hn+1 = −Ahn − 1

S

∫
Γ

hndt+ F, h0 = F, (2.32)

where F is defined in (2.30), converges in H = L2(Γ) no more slowly than

a convergent geometrical series to an element h, and ω = h + S−1 is the

unique solution of the problem (1.35) for Q = 1. Furthermore, the process

(2.32) is stable: i.e., if

gn+1 = −Agn − 1

S

∫
Γ

gndt+ F + εn, h0 = F,
∣∣εn∣∣ ≤ ε, (2.33)

then

lim sup
n→∞

∥∥gn − h
∥∥ = O(ε). (2.34)

Remark 2.3 The process (2.32) converges in C(Γ) if Γ is smooth.

2.4 An Iterative Process for Calculating the Equilibrium

Charge Distribution on the Surface of a Screen

1. The basic equation (see Section 1.4) is∫
Γ

η(t)dt

4πεerst
= 1. (2.35)

Here Γ can be the surface of a metallic body or the surface of a metallic

screen (an infinitely thin body). First consider the case of the solid body.

Let

a(t) =

{∫
Γ

(
4πεerst

)−1
ds

}−1

. (2.36)
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From the abstract results given in Section 6.4 one gets the following theo-

rem:

Theorem 2.6 Let ηn = a(t)ψn, where a(t) is defined in (2.36),

ψn+1 =
(
I +A1

)
ψn + 1, ψ0 = 1 (2.37)

A1ψ =

∫
Γ

(
4πεerst

)−1
a(t)ψ(t)dt. (2.38)

Then ψn converges in H = L2(Γ), and limn→∞ ηn = η is the solution of

equation (2.35).

Consider now the case in which Γ is the surface of a metallic screen. Let

G be the edge of Γ,

h(t) = g−1/2(t), (2.39)

where g(x) is defined in (1.17), and let

a1(t) = h(t)

{∫
Γ

h(s)ds

4πεerst

}−1

(2.40)

Let H− = L2(Γ; a−1
1 (t)), where L2(Γ; p) is the L2 space with the norm

‖f‖2 = ∫
Γ
|f |2p dt.

Theorem 2.7 If a(t) is replaced by a1(t) in Theorem 2.6, then the se-

quence ηn constructed in Theorem 2.6 converges in H− to the solution of

equation (2.35).

2. Consider problem (1.60)-(1.61). If η solves (2.35), then V η solves

equation (1.60) with φ0 = 0. Let τ solve the equation

∫
Γ

τ(s)ds

4πεerst
= φ0. (2.41)

This equation can be solved by the iterative processes given in Theorems

2.6 and 2.7. The constant V can be found from condition (1.61):

V =

∫
Γ

τ(t)dt

(∫
Γ

η(t)dt

)−1

. (2.42)

Let us summarize the above as a theorem.
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Theorem 2.8 The solution of problem (1.60)-(1.61) can be obtained by

the formulas:

σ = lim
n→∞ σn, σn = Vnηn = τn (2.43)

where ηn is defined in Theorem 2.6 for the case of the volume conductor

and in Theorem 2.7 for the case of the metallic screen, τn is defined by

means of the iterative processes given in Theorems 2.6 and 2.7:

τn+1 = (I +A1)τn + φ0, τ0 = φ0, (2.44)

Vn =

∫
Γ

τn(t)dt

(∫
Γ

ηndt

)−1

. (2.45)

Remark 2.4 It can be proved (see, e.g., [143, Appendix 10] or [133])

that the operator Tf =
∫
Γ

f(t)dt
4πεerst

maps Hq(Γ) onto Hq+1(Γ), where Hq =

W q
2 (Γ), −∞ < q < ∞, is the Hilbert scale of Sobolev spaces and Γ ∈ C∞

is a compact closed surface. The operator T is a pseudodifferential elliptic

operator of order −1 (see [56], [1]).
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Chapter 3

Calculating Electric Capacitance

3.1 Capacitance of Solid Conductors and Screens

1. Suppose that the total charge of a conductor is Q and its potential is V .

Then

Q = CV (3.1)

and the coefficient C is called the capacitance of the conductor. If σ(t) is

the surface charge distribution, then∫
Γ

σ(t)dt

4πεerst
= V, s ∈ Γ, (3.2)

and ∫
Γ

σ dt = Q. (3.3)

Thus

C =

∫
Γ

σ dt

(∫
Γ

σ dt

4πεerst

)−1

. (3.4)

The function σ(t) can be calculated by the iterative processes given

in Section 2.3 and Section 2.4. If σn is an approximation to σ then the

potential ∫
Γ

σndt

4πεerst
= Vn(s) (3.5)

is not constant on Γ. In this case we introduce the averaged potential

Vn = S−1

∫
Γ

Vn(s)ds, S := measΓ. (3.6)

25
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If σn → σ in H = L2(Γ) then Vn → V and

C(n) = Qn/Vn =

∫
Γ

σndt

(
1

S

∫
Γ

ds

∫
Γ

σn(t)dt

4πεerst

)−1

. (3.7)

is an approximation to C. The iterative process (2.2) satisfies condition

(2.3), ∫
Γ

σndt = Q, n = 1, 2, . . . . (3.8)

In this case (3.7) can be written as

C(n) = 4π εeS
2

(∫
Γ

∫
Γ

r−1
st δn(t)dt ds

)−1

, (3.9)

where δn is the n-th approximation to the solution of the problem

δ = −Aδ,
∫
Γ

δ(s)ds = S, (3.10)

and A is defined as usual (see (1.28)). One can construct δn by means of

the iterative process

δn+1 = −Aδn, δ0 = 1. (3.11)

Theorem 2.2 and formula (3.9) imply the following theorem.

Theorem 3.1 Let

C(n) = 4π εeS
2

{(
− 1

2π

)n ∫
Γ

∫
Γ

dt ds

rst

∫
Γ

· · ·︸︷︷︸
n

∫
Γ

ψ
(
t, t1

)

· · ·ψ(tn−1, tn
)
dt1 · · · dtn

}−1

,

(3.12)

where S = measΓ and

ψ(t, s) =
∂

∂Nt

1

rts
. (3.13)

Then ∣∣C − C(n)
∣∣ ≤ cqn, (3.14)

where c > 0 and 0 < q < 1 depend on the shape of the conductor but do not

depend on n. The following inequality holds:

4π εeS
2J−1 = C(0) ≤ C, (3.15)
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where

J =

∫
Γ

∫
Γ

r−1
st dt ds. (3.16)

Proof. The first statement of Theorem 3.1 follows from Theorem 2.2,

and the second statement will be proved in Section 3.3. �

Remark 3.1 The following empirical method is used for calculating ca-

pacitances: they assumed that the surface charge distribution of the total

charge Q is uniform, i.e., σ = QS−1, calculated the averaged potential

V = S−1

∫
Γ

ds

∫
Γ

QS−1dt

4πεerst

and found an approximation to C by the formula:

C ≈ QV −1 = 4πεeS
2J−1. (3.17)

This is the zeroth approximation (3.12). Theorem 3.1 gives additional in-

formation: first, the inequality (3.15), which says that the zeroth approxi-

mation is a lower bound for C, and second, the way to compute C with any

desired accuracy by using the n-th approximation. Therefore Theorem 3.1

gives a justification of the empirical rule described above.

Remark 3.2 One can use the iterative process given in Section 2.4 to

calculate electrical capacitances of conductors. Let η be the solution of

equation (3.2) with V = 1 and ηn be the approximation of the n−th order

to η. Then Vn ≈ 1 for large n and formula (3.7) takes the form

Cn ≈ Qn =

∫
Γ

ηndt. (3.18)

The subscript n in (3.18) indicates that Cn in (3.18) differs from C(n) in

(3.12).

2. If the conductor is a thin metallic screen one can use formula (3.18).

The empirical method described in Remark 3.1, i.e., formula (3.17), is not

very accurate for screens. For example if the screen is a circular disk the

error in calculating the capacitance by formula (3.17) is 7.5%.
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3.2 Variational Principles and Two-Sided Estimates of

Capacitance

1. Variational principles for capacitances have been widely discussed in

the literature. The well-known book [79] should be mentioned first. A

reference book [43] on electrical capacitances is a collection of numerical

results and formulas for calculating of capacitance. Our purpose is to give

some methods for deriving two-sided estimates for capacitance. Some of

the results seem to be new, e.g., a necessary and sufficient condition for

the Schwinger stationary principle to be extremal and estimates of the

capacitance of a conductor placed in inhomogeneous dielectric medium.

2. We start with the following theorem.

Theorem 3.2 Let A be a symmetric linear operator in a Hilbert space H

with domain of definition D(A). The equality

(Af, f) = max
φ∈D(A)

|(Af, φ)|2
(Aφ, φ)

(3.19)

holds if and only if A ≥ 0, i.e., (Aφ, φ) ≥ 0 for all φ ∈ D(A). By definition,

|(Af, φ)|2/(Aφ, φ) = 0 if (Aφ, φ) = 0.

Remark 3.3 Let Af = g. In many physical problems (some examples

will be given later) the quantity (f, g) has physical significance. J. Schwinger

(see, e.g., [39]) used the stationary representation of this quantity

(f, g) = stφ∈D(A)
|(g, φ)|2
(Aφ, φ)

, (3.20)

where st is the sign of the stationary value. In practice it is important

to know when this representation is extremal. Theorem 3.2 answers this

question and provides a tool for deriving lower bounds for (Af, f).

Remark 3.4 For the equality

(Af, f) = min
φ∈D(A)

|(Af, φ)|2
(Aφ, φ)

(3.21)

to hold it is necessary and sufficient that A ≤ 0.

Proof of Theorem 3.2. If A ≥ 0 then |(Af, φ)|2 ≤ (Af, f)(Aφ, φ) for all

f, φ ∈ D(A). This is just the Cauchy inequality for the nonnegative bilinear

form [f, φ] = (Af, φ). Hence (Af, f) ≥ |(Af, φ)|2/(Aφ, φ) and equality

holds for φ = λf , λ = const. Thus (3.19) follows and the sufficiency part

is proved.
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If A ≤ 0 then −A ≥ 0 and

(−Af, f) = max
φ∈D(A)

|(−Af, φ)|2
(−Aφ, φ) . (3.22)

Since max(−x) = −minx, where x is a real variable, one can see that (3.22)

is equivalent to (3.21).

Let us prove the necessity of the condition A ≥ 0. Suppose that

(Aψ,ψ) < 0 and (Aω, ω) > 0. Let φ = ω + λψ, where λ is a real number,

and (3.19) holds. Then

(Af, f) ≥ |(Af, ω)|2 + 2λRe(Af, ω)(ψ,Af) + λ2|(Af, ψ)|2
(Aω, ω) + 2λRe(Aψ, ω) + λ2(Aψ,ψ)

. (3.23)

Since (Aω, ω)(Aψ,ψ) < 0, the denominator of this fraction has two real

zeros. Because the fraction is bounded from above, the numerator has

the same roots as the denominator. The product of these roots for the

denominator in (3.23) is equal to (Aω,ω)
(Aψ,ψ) < 0. Therefore, the product of

these roots for the numerator is negative, and one gets the inequality:

|(Af, ω)|2
|(Af, ψ)|2 < 0, (3.24)

which is a contradiction. Therefore A ≥ 0 or A ≤ 0. The case A ≤ 0 is

impossible. Indeed, (3.19) implies that (Af, f) ≥ |(Af, φ)|2/(Aφ, φ), and,
if (Aφ, φ) < 0, one gets (Af, f)(Aφ, φ) ≤ |(Af, φ)|2. Thus

(−Af, f)(−Aφ, φ) ≤ |(−Af, φ)|2, (3.25)

which contradicts the Cauchy inequality for the nonnegative operator −A.
Therefore A ≥ 0. The necessity part is proved. �

Remark 3.5 Let A = A∗. Then

(
Afi, fj

)
= st

(Afi, φj)(φi, Afj)

(Aφi, φj)
. (3.26)

If A ≥ 0 then for i = j one can replace st by max in (3.26).

3. It is now easy to derive some lower bounds for capacitance. Let Γ be

the surface of a perfect conductor which is charged to the potential V = 1.

If σ is the surface charge distribution, then

Aσ ≡
∫
Γ

σ(t)dt

4πεerst
= 1, (3.27)
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and

C =

∫
Γ

σ dt. (3.28)

Since the integral operator A in (3.27) is selfadjoint and positive on H =

L2(Γ), Theorem 3.2 says that

C = max

{(∫
Γ

σ(t)dt

)2(∫
Γ

∫
Γ

σ(t)σ(s)ds dt

4πεerst

)−1
}
, (3.29)

where the maximum is taken over all σ ∈ C(Γ) if Γ is a smooth closed

surface. From (3.29) the well-known principle of Gauss [79] follows imme-

diately:

C−1 = min
σ

(
Q−2

∫
Γ

σ(t)u(t)dt

)
. (3.30)

This principle says that if the total charge Q is distributed on the surface

Γ with the density σ(t) and u(t) is the potential of this charge distribution

on Γ, then the minimal value of the right-hand side of (3.30) is C−1 and

this minimal value is attained by the equilibrium charge distribution (i.e.,

by the solution of (3.27)).

From (3.29) it is easy to obtain some lower bounds for C. For example,

if σ = 1 then (compare with (3.15))

C ≥ C(0) ≡ 4πεeS
2

J
, S = measΓ, J =

∫
Γ

∫
Γ

ds dt

rst
. (3.31)

One can take

σm =
m∑
j=1

cjφj , (3.32)

where {φj} is a linearly independent system of functions in H and cj are

constants which are to be determined from the condition that the right-hand

side of (3.29) is maximal. Then σm is an approximation to the equilibrium

charge distribution and the value of the right-hand side of (3.29) is an

approximation to C.

4. Let us formulate two classical variational principles for capacitances:

the Dirichlet and Thomson principles [79]. The Dirichlet principle gives

an upper bound for C. The Thomson principle is equivalent to the Gauss

principle. Therefore combining the Dirichlet principle and (3.29) one can

obtain two-sided estimates for C.
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The Thomson principle is:

C−1 = min

∫
De

εe|E|2dx, (3.33)

where De is the exterior of the domain with boundary Γ, and the minimum

is taken over the set of vector fields satisfying the conditions

divE = 0,

∫
Γ

(
N, εeE

)
dt = 1, (3.34)

where N is the outer unit normal to Γ at the point t. The minimum in

(3.33) is attained at the vector E = −�u, where

� u = 0 in De, u|Γ = const, u(∞) = 0, −εe
∫
Γ

∂u

∂N
dt = 1. (3.35)

The Dirichlet principle is:

C = min

∫
De

εe|�u|2dx, (3.36)

where the minimum is taken over the set of functions u ∈ C1(De) such that

u|Γ = 1, u(∞) = 0. (3.37)

This minimum is attained at the function u which is the solution to the

problem

� u = 0 in De, u|Γ = 1, u(∞) = 0. (3.38)

Both principles are particular cases of the principles formulated and

proved in the next section.

5. If Γ is the surface of a screen the admissible functions in the vari-

ational principles should satisfy the edge condition: if L is the edge of Γ

then

u ∼ {g(x)}1/2, σ ∼ {g−1/2(x)
}
, g(x) ≡ min

t∈L
|x− t|. (3.39)

3.3 Capacitance of Conductors in an Anisotropic and

Nonhomogeneous Medium

Let ε = εij(x) be the tensor (a positive definite matrix) of dielectric per-

mettivity of the medium and let D be a perfect conductor with a smooth

boundary Γ. The problem of finding the capacitance of this conductor
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placed in an inhomogeneous anistropic medium is of interest in many prac-

tical cases. For example, suppose a metallic body is placed partially in

water. If the characteristic dimension of the conductor is small in compar-

ison with the wavelength in the medium with large dielectric constant the

capacitance determines the scattering amplitude. We assume for simplicity

that εij(x) ∈ C1(De) and εij(x) = εij does not depend on x for sufficiently

large x. This assumption guarantees that the basic results about existence

of solutions to static problems are the same as for the Laplace operator

corresponding to homogeneous medium. The variational principles 1 and

2, formulated below, are analogous to the classical Dirichlet and Thomson

principles:

Principle 1

C = min

∫
De

(
ε�u,�u

)
dx, (3.40)

where the minimum is taken over the C1−functions u(x) such that

u|Γ = 1, u(∞) = 0. (3.41)

In the statement of these principles the usual notations

(a, b) =

3∑
j=1

ajbj, (εa)i =

3∑
j=1

εij(x)aj (3.42)

are used.

Principle 2

C−1 = min

∫
De

(εE,E)dx, (3.43)

where the minimum is taken over the set of vector fields satisfying the con-

ditions

div(εE) = 0 in De,

∫
Γ

(N, εE)dt = 1. (3.44)

Proof of Principle 1. Assume that

div(ε�u) = 0 in De (3.45)

and that (3.41) is valid. The Euler equation for the functional in (3.40) is

(3.45). Therefore (3.45) and (3.41) are necessary conditions for the function

which solves (3.40), (3.41). The solution of (3.45) and (3.41) exists and is
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unique. Let us show that the functional in (3.40) attains its minimum at this

solution and this minimum is equal to the capacitance C. Let η ∈ C1(De)

satisfy the conditions

η|Γ = 0, η(∞) = 0. (3.46)

Then

∫
De

(ε�u+ ε�η,�u+ �η)dx

=

∫
De

(ε�u,�u)dx+

∫
Ee

(ε�η,�η)dx + 2Re

∫
De

(ε�u,�η)dx

≥
∫
De

(ε�u,�u)dx.

(3.47)

One can assume that u and η are real-valued functions, and then the

sign Re can be dropped in the above equation.

We took into consideration that the matrix ε is positive definite and

∫
De

(ε�u,�η)dx = −
∫
Γ

(N, ηε�u)ds−
∫
De

η div(ε�u)dx = 0. (3.48)

Furthermore,

∫
De

(ε�u,�u)dx = −
∫
Γ

(N, ε�u)u dt =
∫
Γ

(D,N)dt = Q, (3.49)

where D is the electrical induction. Therefore the minimum in (3.40) is

equal to the capacitance C if u is the solution to problem (3.41), (3.45).�

Proof of Principle 2. From (3.49) it lollows that the right-hand side

of (3.43) ss equal to C−1 if E = −A�u, where u is the solution to (3.41),

(3.45) and the constant A is defined as

A =

{
−
∫
Γ

(N, ε�u)dt
}−1

= Q−1. (3.50)

In (3.50) one has Q = C, because Q = Cu, and u = 1 on Γ, see (3.41).

Let us show that any other E satisfying (3.49) gives a larger value to

functional (3.46). Indeed, let E be as above, and let E + h solve (2.44).
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Then

∫
De

(εE + εh,E + h)dx

=

∫
De

(εE,E)dx+

∫
De

(εh, h)dx+ 2Re

∫
De

(εE, h)dx

≥
∫
De

(εE,E)dx.

(3.51)

Here the following identity was used:

∫
De

(εE, h)dx = −A
∫
De

(�u, εh)dx

= A

∫
De

u div(εh)dx+A

∫
Γ

u(N, εh)dt = 0.

(3.52)

We have proved Principle 2. �

Remark 3.6 If

εij = δij =

{
1, i = j

0, i 
= j
,

then principles 1 and 2 are the Dirichlet and Thomson principles.

Remark 3.7 Principles 1 and 2 give estimates of the capacitance from

above and from below.

Example 3.1 Let us take

E = −Aε−1�u, (3.53)

where ε−1 is the inverse matrix of ε, u is an arbitrary harmonic function in

De (i.e., � u = 0 in De), and

A−1 = −
∫
Γ

∂u

∂N
dt. (3.54)

Then condition (3.44) is satisfied. Let

u(x) =
1

S

∫
Γ

dt

2πrxt
, S = meas Γ. (3.55)
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Then the constant A, defined in (3.54), is equal to 1. Therefore it follows

from (3.43) that

C ≥ 4π2S2

{∫
De

(
ε−1�v,�v

)
dx

}−1

, (3.56)

where

v(x) ≡
∫
Γ

r−1
xt dt. (3.57)

If εij(x) = εeδij , where εe = const, i.e., the medium is isotropic and homo-

geneous, then (3.56) and Green’s formula imply that

C ≥ 4π2S2εe

{
−
∫
Γ

ds

(∫
Γ

dt

rst

∂

∂Ns

∫
Γ

dt

rst

)}−1

. (3.58)

Example 3.2 Let εij(x) = ε(x)δij ,

u(x) = |x|−1, E =
Ax

|x|3ε(x) , (3.59)

where

A =

{∫
Γ

(t, N)

|t|3 dt

}−1

=
1

4π
. (3.60)

From (3.43) it follows that

C ≥ 16π2

{∫
De

dx

|x|4ε(x)
}−1

. (3.61)

In particular if De = {x : |x| ≥ a} and ε(x) = ε(|x|) = ε(r), then

C ≥ 16π2

{
4π

∫ ∞

a

dr
1

r2ε(r)

}−1

= 4π

{∫ ∞

a

dr

r2ε(r)

}
. (3.62)

Actually, in this case C is equal to the right-hand side of (3.62) because

(3.59) is the electrostatic field corresponding to the equilibrium charge dis-

tribution on the sphere r = a if ε(x) = ε(r).

Example 3.3 Let all of the space be divided into n parts bounded by

conical surfaces. Suppose that the jth cone cuts the solid angle ωj on the

unit sphere and the vertices of the cones are in the center of a metallic ball
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with radius a. Let the dielectric constant of the jth cone be ε0εj(r). Then

(3.61) says that

C ≥ 16π2ε0

{
n∑
j=1

ωj

∫ ∞

a

dr

r2εj(r)

}−1

. (3.63)

In particular, if ω1 = ω2 = 2π then

C ≥ 8πε0

{∫ ∞

a

dr

r2ε1(r)
+

∫ ∞

a

dr

r2ε2(r)

}−1

. (3.64)

This example covers the case of the ball halfway immersed in the water.

It is clear from the above examples that Principle 2 is easy to use in

practice: the only difficulty is of computational nature. In application of

principle 1 there is an additional difficulty of finding a set of functions which

satisfy condition (3.41). If the surface Γ is a coordinate surface in some

known coordinate system it is easy to find such functions and Principle 1

gives upper bounds on C. A more general situation is discussed in Example

3.5 below.

Example 3.4 Let us take Example 3.3 and substitute u = a/r in (3.40).

This yields

C ≤ ε0

n∑
j=1

ωja
2

∫ ∞

a

r−2εj(r)dr . (3.65)

In particular, if ω1 = ω2 = 2π one obtains

8πε0

{∫ ∞

a

r−2
[
ε1(r) + ε2(r)

]
dr

}−1

≤ C ≤ 2πε0a
2

∫ ∞

a

r−2 · [ε1(r) + ε2(r)
]
dr,

(3.66)

from (3.64) and (3.65). For ε1(r) = ε2(r) = 1, estimate (3.66) gives the

exact value of C. One can improve the estimates taking more complicated

admissible functions.

Example 3.5 Suppose that r = F (θ, φ) is the equation of the surface of

the conductor. Set u = F (θ, φ)/|x| in (3.40). Then condition (3.41) holds
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and (3.40) yields the following upper bound on C:

C ≤ εe

∫
S2

dφdθ sin θ

∫ ∞

F (θ,φ)

drr2
( |F |2
r4

+
|Fθ|2
r4

+
|Fφ|2
r4 sin2 θ

)

= εe

∫
S2

dφdθ sin θ

F (θ, φ)

(
|F |2 + |Fθ|2 + sin−2 θ|Fφ|2

)
, εe = const .

(3.67)

This formula is useful if the integral on its right-hand side converges.

3.4 Physical Analogues of Capacitance

In heat transfer theory, in quasistatic electrodynamics, and in other areas of

applied science, mathematical formulation of the problems can be reduced

to the solution of the Laplace equation. Therefore in these areas of physics

there exist some quantities analogous to the capacitance.

For example heat conductance in a homogeneous medium can be defined

as

GT =
k

ε
C, (3.68)

where k is the coefficient of thermal conductivity, ε is the dielectric con-

stant, C is the electrical capacitance of the conductor, and GT is the heat

conductance of the body with the same shape as the shape of the conductor.

If GM is the magnetic conductance and μ is the magnetic constant then

GM =
μ

ε
C. (3.69)

If G is the electric conductance and γ is the coefficient of electrical conduc-

tivity, then

G =
γC

ε
. (3.70)

3.5 Calculating the Potential Coefficients

1. Let n conductors be placed in a homogeneous medium with the dielectric

constant ε = 1. Let Γj be the surface of the jth conductor. Because the

equations of electrostatics are linear there is a linear dependence between
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the potentials Vj of the conductors and their total charges Qj,

Qj =

n∑
i=1

CijVj , 1 ≤ i ≤ n. (3.71)

The coefficients Cij , i 
= j are called the electrical inductance coefficients

and the coefficients Cjj are called the capacitance coefficients.

The quadratic form

U =
1

2

n∑
i,j=1

CijVjVi (3.72)

is the energy of the electrostatic field. Therefore this form is positive def-

inite. It is well known that this is the case if and only if all the principal

minors of the matrix Cij are positive (Sylvester’s criterion). In particular

Cjj > 0, CjjCii > C2
ij , det

(
Cij
)
> 0, (3.73)

and

Cij = Cji, 1 ≤ i, j ≤ n (3.74)

since the matrix Cij is real-valued. We can rewrite (3.71) as

Vi =
n∑
j=1

C
(−1)
ij Qj , 1 ≤ i ≤ n. (3.75)

The coefficients C
(−1)
ij are called the potential coefficients. The following

inequalities hold

C
(−1)
jj > 0, C

(−1)
ij > 0; Cij < 0. (3.76)

The first inequality in (3.76) holds because C
(−1)
ij is a positive definite ma-

trix if Cij is. In order to prove the last inequality in (3.76) let us take

Vm = 0 if m 
= j and Vj = 1, then formula (3.71) shows that Qi = Cij .

Therefore we must show that Qi < 0. But Qi = −εe
∫
Γi
(∂u/∂N)ds. Thus

it is sufficient to prove that (∂u/∂N)|Γi ≥ 0. Here u is the electrostatic po-

tential generated by the jth conductor, provided that the other conductors

have zero potentials. The function u is a harmonic function (i.e., � u = 0)

and u(∞) = 0, u|Γj = 1. Since u is harmonic it cannot have extremal

points inside the domain of definition. Therefore 0 < u < 1 between the

conductors.
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Since u|Γi = 0 according to our assumption, it is clear that

(∂u/∂N)|Γi ≥ 0, and the last inequality in (3.76) is proved. The second

inequality in (3.76) can be proved similarly.

2. The problem of determining the equilibrium charge distribution on

the surfaces of a system of conductors can be reduced to the following

system of integral equations (see (2.23), where kj should be replaced by 1

and f = 0):

σ = −B̃σ,

(B̃σ)j =

n∑
m �=j,m=1

Tjmσm +Ajσj , 1 ≤ j ≤ n, σ =
(
σ1, . . . , σn

)
, (3.77)

∫
Γj

σjdt = Qj , 1 ≤ j ≤ n. (3.78)

Here Qj is the total charge of the jth conductor. (See Section 2.2 and

Section 2.3.)

Theorem 3.3 The solution to problem (3.77)-(3.78) exists, is unique,

and can be found by the iterative process

σ(k+1) = −B̃σ(k), σ
(0)
j = QjS

−1
j , 1 ≤ j ≤ n, Sj = measΓj . (3.79)

This theorem follows from Theorem 6.2.

Let us derive some approximate formulas for the potential coefficients.

Taking Qj = δjm in (3.75) yields

C
(−1)
im = Vi. (3.80)

Let us substitute in the system of integral equations

n∑
j=1

∫
Γj

σj(t)dt

4πεertti
= Vi, 1 ≤ i ≤ n, (3.81)

σ
(0)
j = QjS

−1
j δjm instead of σj(t). Taking into account (3.75) one obtains

C
(−1)
im ≈ 1

4πεeSm

∫
Γm

dt

rtti
, 1 ≤ i ≤ n. (3.82)

The right-hand side of this formula is not constant on Γi because σ
(0)
j is

not the exact solution to (3.81). Therefore we take as an approximation to
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C
(−1)
im the average of the right-hand side of (3.82). This yields

C
(−1)
im ≈ C̃

(−1)
im ≡ 1

4πεeSmSi

∫
Γi

∫
Γm

ds dt

rst
, 1 ≤ i,m ≤ n. (3.83)

One can improve formula (3.83) by using the higher order approxima-

tions to σi say σ
(k) defined in (3.79). In order to find some approximation

to Cij one can invert the matrix C
(−1)
ij , using the approximate values of

C
(−1)
ij given above.

3. Let us derive variational principles for the potential coefficients. To

do so we take the potential energy of the electrostatic field

U =
1

2

n∑
i,j=1

C
(−1)
ij QiQj (3.84)

and set Qi = δim. This yields

2U = C(−1)
mm . (3.85)

Among various surface charge distributions such that∫
Γi

σi(t)dt = δim, 1 ≤ i ≤ n, (3.86)

the distribution, corresponding to the actual electrostatic field, minimizes

U . Thus

C(−1)
mm = min

n∑
i,j=1

∫
Γi

∫
Γj

σi(t)σj(s)ds dt

4πεerst
, (3.87)

where the minimum is taken over the set of σj satisfying condition (3.86).

In order to derive a variational principle for Cmm we take Vi = δim in

(3.72). This yields

2U = Cmm. (3.88)

The potential energy U of the electrostatic field with the potential u(x) can

be written as

U =
1

2

∫
De

εe|�u|2dx, (3.89)

where De is the domain outside of the conductors. Let u satisfy the condi-

tions

u|Γm = 1, u|Γi = 0, i 
= m, u(∞) = 0, u ∈ C1
(
De

)
. (3.90)
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Then

Cmm = min

∫
De

εe|�u|2dx, (3.91)

where the minimum is taken over the set of functions u satisfying condition

(3.90).

Let m 
= j and assume∫
Γi

σidt = δij + δim, 1 ≤ i ≤ n. (3.92)

From (3.84) and (3.92) it follows that

2U = C(−1)
mm + 2C

(−1)
mj + C

(−1)
jj . (3.93)

Therefore

C(−1)
mm + 2C

(−1)
mj + C

(−1)
jj = min

n∑
i,k=1

∫
Γi

∫
Γi

σi(t)σk(s)ds dt

4πεerst
, (3.94)

where the minimum is taken over the set of functions σi satisfying condition

(3.92).

If C
(−1)
jj , 1 ≤ i ≤ n, are already calculated, then one can calculate C

(−1)
mj

from (3.94).
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Chapter 4

Numerical Examples

4.1 Introduction

Given in Sections 2 and 3 algorithms for calculating electrostatic fields

and linear functionals of these fields, such as electrical capacitances, were

reduced in these sections to calculating certain multiple integrals. From

the point of view of numerical analysis one should integrate functions with

at worst weak singularities. The numerical integration of such functions

is a problem of independent interest. It has been discussed in detail for

functions of one variable [21], [55], [54], but less is known about calculating

multidimensional integrals of functions with weak singularities. The basic

idea in the one-dimensional case is to integrate explicitly the singular part

of the integer and thus to reduce the problem to the integration of a smooth

function. This problem is well understood.

In the multidimensional case the first step in the above program was

not discussed sufficiently.

In [10] optimal methods for calculating multidimensional integrals with

weakly singular integrands are developed. These methods are presented in

the Appendix.

In this chapter two problems of practical interest will be solved. First,

the capacitances of circular metallic cylinders are tabulated. Secondly, the

capacitances of metallic parallelepipeds of arbitrary dimensions are tab-

ulated. In both cases there are no closed-form analytical solutions to the

corresponding electrostatic problems, and the results are new. Special cases

of these results, such as the capacitance of a cube, disk, or very long cylin-

der, will be compared with previously published results. The numerical

results show that the formulas for calculating the capacitances, which have

been derived in Section 3, are quite efficient.

43
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4.2 Capacitance of a Circular Cylinder

Let 2L be the length and a be the radius of a metallic cylinder. Let C1 =

C/(2L) and � = La−1.

The capacitance per unit length C1 is given in Figure 4.1 and Figure 4.2

as a function of �, 0.1 ≤ � ≤ 10. The capacitance C was calculated using

formula (3.12) with n = 0 and n = 1. It turned out that for � ≥ 5, n = 0

this formula gives a value which agrees within 1% with the capacitance of

a hollow metallic tube with the same geometry. Numerical calculation of

the capacitance of such a tube was given in [43]. For 1 ≤ � ≤ 5, n = 0 the

difference (i.e., the relative error) is at most 3%. For � ≥ 1 and n = 1 the

difference is at most 1%, while for 0.1 ≤ � ≤ 1, n = 1 the difference is at

most 3%. For � ≤ 0.1 the asymptotic formula holds

C1 = 4εe�
−1 (4.1)

with the relative error at most 3%. This formula follows from the known

formula C = 8aεe for the capacitance of the metallic disk of radius a and the

definition C1 = C/(2L). As � → 0 the accuracy of formula (4.1) increases.
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For � ≥ 10 the formula

C1 = 4π εe
(
Ω−1 + 0.71Ω−3

)
, Ω ≡ 2

[
ln(4�)− 1

]
(4.2)

holds [43] with error at most 1%. For � ≥ 4 formula (4.2) holds with the

error at most 3.5%. For 0.1 ≤ � ≤ 4 the formula

C1 =
2π2εe

ln(16�−1)
(4.3)

holds with error at most 3.5%. Thus formulas (4.1)–(4.3) give C1 for any �

with the error at most 3.5%. An unexpected observation is that

C1 tube

C1cylinder
=

π2

2 ln(16�−1)
=

4.93

ln(16�−1)
, �� 1. (4.4)

This formula follows from (4.1) and (4.3). Formula (4.3) is the asymptotic

formula for the capacitance of the tube for � � 1. For � = 0.1 the ratio

(4.4) is equal to 0.98. This ratio is equal to 0.5 for �−1 = 1250. Thus the

capacitance per unit length of the metallic cylinder is nearly equal to that

of the tube for � ≥ 0.1.
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4.3 Capacitances of Parallelepipeds

Let a parallelepiped have edges

A1 ≤ A2 ≤ A3, (4.5)

let V denote its volume, set

λ = V 1/3
(
A1A2A3

)1/3
, (4.6)

and let Cλ = C(A1A2A3) be its capacitance. Let

aj = Ajλ
−1, 1 ≤ j ≤ 3; a1 ≤ a2 ≤ a3, a1a2a3 = 1. (4.7)

It is clear that

Cλ = λ · C, (4.8)

where C is the capacitance of the parallelepiped with sides a1, a2, a3 and

unit volume.

Therefore it is sufficient to tabulate C(a1, a2, a3), where aj , 1 ≤ j ≤ 3

satisfy (4.7).

Some long calculations (see [95]), which are based on formula (3.12)

with n = 0, lead to the formula

Cλ
4πε0

≈ S2

J
, (4.9)

where

S = 2
(
A1A2 +A1A3 +A2A3

)
(4.10)

and

J =
4

3

3∑
i=l

[
d

(
D2 − S

2
− 3V

Ai

)
−A3

i

]
ln
D −Ai
D +Ai

+
4

3

3∑
i=l

∑
j �=i

V 2

A2
iAj

(
3 +

V

AiA2
j

)
ln
D2 −A2

i +Aj

D2 −A2
i −Aj

− 8

3

3∑
i=l

(
D2 −A2

i −
2V

Ai

)
D2 −A2

i

− 8

3
SD +

16

3

[
d

(
D2 − S

2

)
+ 3V

]
− 8

3

3∑
i=l

Ai
(
A2
i + 3S

)
arctg

V

A2
iD

,

(4.11)
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where

D =

(
3∑
i=l

A2
i

)1/2

; d =
3∑
i=l

Ai; S = 2V
3∑
i=l

1

Ai
; V =

3∏
i=l

Ai.

Let us describe a way to tabulate

C̃ ≡ C

4πεe
. (4.12)

It follows from (4.7) that

0 ≤ a1 ≤ 1. (4.13)

Let

a1 = kn−1, 1 ≤ k ≤ n (4.14)

where n is an integer which defines the table. Let

a2 = jn−1, j ≥ k. (4.15)

Then

a3 =
1

a1a2
=
n2

kj
, k ≤ j. (4.16)

From (4.7) it follows that jn−1 ≤ n2(kj)−1. Thus

k

n
≤ j

n
≤
√
n/k. (4.17)

Therefore

a1 ≤ a2 ≤ 1√
a1
. (4.18)

For fixed a1 and a2, the parameter a3 is uniquely determined by (4.16). This

means that C̃ can be tabulated as a function of a1 and a2. In Table 4.1

the results are given for n = 10. In the horizontal line the values of a1 are

given. In the vertical line the values of a2 are given. At the intersections

the values of C̃(a1, a2) are given. If zero stands at the intersection, this

means that for the given a1 the chosen a2 is not allowed by (4.18).

Let us formulate an algorithm for calculating Cλ for an arbitrary par-

allelepiped.

Step 1. Order the sides of the parallelepiped as shown in (4.5) and

calculate λ from (4.6) and a1 and a2 from (4.7).
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Table 4.1 The capacitances C̃ = C/(4πεe) of the unit parallelepiped.

Step 2. Find the numbers closest to a1 and a2 in the horizontal and

vertical line of Table 4.1 respectively. Find C(a1, a2) in this table.

Step 3. Find Cλ from (4.8) and (4.12).

Example 4.1 Let A1 = 1, A2 = 2, A3 = 4. Then V = 8, λ = 2, a1 = 0.5,

a2 = 1, C̃ = 0.70633. Thus Cλ = 8πεe · 0.70633 	 17.7514εe.

Example 4.2 Let A1 = A2 = A3 = 1, i.e., we have a unit cube, a1 =

a2 = a3 = 1, V = 1, λ = 1. From Table 4.1 one find C = 4πεe · 0.649.

References [43] and [79] mention about 17 papers dealing with the test

problem of calculating the capacitance of a cube. The best results re-

ported in [79] and obtained by means of some complicated calculations

with harmonic polynomials with the symmetry group of a cube, state that
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the capacitance C of the unit cube satisfies the following estimates:

0.632 <
C

4πεe
< 0.710,

C

4πεe
≈ 0.646. (4.19)

From (3.12) and (3.15) it follows that the value C/(4πεe) = 0.649 is not

only an approximation to C/(4πεe) but also a lower bound. One can see

that for a cube formula (3.12) gave a good result even for n = 0.

Example 4.3 Let A1 = 0, A2 = 2, A3 = 5. This is the case of a thin

rectangular metallic plate. Since the smallest a1 = 0.1 in Table 4.1, we take

A1 = 0.1, A2 = 2, A3 = 5 and find C = 4πεe · 1.18577. This agrees with

the value given in [33].

Example 4.4 Consider the square thin plate: A1 = 0.1, A2 = A3 = 1.

Let a1 = 0.1, a2 = a3 = 3.16. Then a1a2a3 = 1 and from Table 4.1 one

finds C/(4πεe) = 1.12714. For the capacitance of the thin plate with the

unit side one finds C(1)/(4πεe) = 1.12714/3.16 = 0.3566. This agrees with

the value 0.360 given in [43].

Remark 4.1 Table 4.1 shows that among all parallelepiped with the fixed

volume the cube has the minimal capacitance. This can be proved, but

the proof (see [68]) is not elementary. The error in the calculation of the

capacitances in Table 4.1 is at most 2%.

4.4 Interaction Between Conductors

Let two conducting balls of radius a be charged to potential V each. Then

Q = C11V + C12V , Q = C21V + C22V and by symmetry C11 = C22,

C12 = C21. Let us join these balls. The electrostatic equilibrium will be

preserved since the potentials of the balls are the same. Let C̃ denote the

capacitance of the joined balls. Then C̃ = 2Q/V = 2(C11 +C12). Let C be

the capacitance of a single ball. Then C̃/(2C) = (C11 + C12)/C. Let d be

the distance between the centers of the balls. Then the numerical results
[43] give C̃/(2C) = 0.75 if 2ad−1 = 0.5; C̃/(2C) = 0.91 if 2ad−1 = 0.2;

C̃/(2C) = 0.71 if 2ad−1 = 0.9. Therefore one makes an error of at most

25% if one neglects the interaction of the conductors if a ≤ 0.25d and one

makes an error of at most 10% if a ≤ 0.1d.
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Chapter 5

Calculating Polarizability Tensors

5.1 Calculating the Polarizability Tensor of a Solid Body

1. If a solid conductor is placed in an exterior homogeneous electrostatic

field E, then the induced charge distribution σ(t) appears on its surface.

Therefore the conductor acquires the dipole moment

Pi =

∫
Γ

tiσ(t)dt, (5.1)

where ti is the ith coordinate of the radius vector t of the point t at the

surface Γ of the conductor. Since the equations of electrostatics are linear,

there is a linear relation between P and E:

Pi = αijεeV Ej (5.2)

(summation over the repeated indices is understood), where V is the volume

of the conductor, εe is the dielectric permittivity of the exterior medium,

the matrix αij is called the polarizability tensor. The dipole moment is in-

teresting in many applications, especially in scattering theory (see Chapter

7).

A more general definition of the dipole moment is as follows. Let φ0 =

−(E, x) be the potential of the exterior homogeneous field, φ = φ0 + u be

the potential of the total field. If the obstacle is finite, then

u ∼ (P, x)

4πεe|x|3 as |x| −→ ∞. (5.3)

We assume here that the obstacle is electroneutral, that is, its total charge

is zero. The vector P is called the dipole moment induced on the obstacle

by the exterior field E.

51
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2. Let the obstacle be a homogeneous body with dielectric constant ε.

Put

γ =
ε− εe
ε+ εe

. (5.4)

The polarizability tensor is defined by the formula

Pi = αij(γ)εeV Ej . (5.5)

If ε = ∞ then γ = 1, αij(1) = αij where αij is the polarizability tensor

of the perfect conductor with the same shape. If ε = 0, then γ = −1,

αij(−1) := βij , where βij is the magnetic polarizability tensor (the polariz-

ability tensor of the insulator). Our aim is to give approximate analytical

formulas for calculating αij(γ).

Let us introduce some notations. Let

b
(0)
ij = V δij , δij =

{
1, i = j,

0, i �= j,
(5.6)

b
(1)
ij =

∫
Γ

∫
Γ

Ni(t)Nj(s)

rst
ds dt, (5.7)

where Ni(t) is the ith component of the outer unit normal to Γ at the point

t,

b
(m)
ij =

∫
Γ

∫
Γ

ds dtNi(t)Nj(s)

∫
Γ

· · ·︸︷︷︸
m−1

∫
Γ

× 1

rstm−1

ψ
(
t1, t

)
ψ
(
t2, t1

) · · ·ψ(tm−1, tm−2

)
dt1 · · · dtm−1,

(5.8)

where

ψ(t, s) =
∂

∂Nt

1

rst
.

Define

α
(n)
ij (γ) =

2

V

n∑
m=0

(−1)m

(2π)m
γn+2 − γm+1

γ − 1
b
(m)
ij , n > 0. (5.9)

In particular

α
(1)
ij (γ) = 2

(
γ + γ2

)
δij − γ2

πV
b
(1)
ij , (5.10)



Calculating Polarizability Tensors 53

α
(1)
ij = 4δij − 1

πV
b
(1)
ij , (5.11)

β
(1)
ij = − 1

πV
b
(1)
ij . (5.12)

Note that b
(m)
ij depends only on the geometry of the body.

Theorem 5.1 The following estimate holds
∣∣αij(γ)− α

(n)
ij (γ)

∣∣ ≤ cqn, 0 < q < 1, −1 ≤ γ ≤ 1, (5.13)

where c > 0 and q are constants which depend only on the shape of Γ and

on γ.

Remark 5.1 From (5.9) for ε = ∞ (i.e., γ = 1) it follows that

α
(n)
ij =

2

V

n∑
m=0

(−1)m

(2π)m
(n+ 1−m)b

(m)
ij , (5.14)

and for ε = 0 (i.e., γ = −1) it follows that

β
(n)
ij =

1

V

n∑
m=0

(−1)n+m−1 − 1

(2π)m
b
(m)
ij . (5.15)

Proof of Theorem 5.1. Let us define

P
(n)
i =

∫
Γ

tiσndt := α
(n)
ij V εeEj , (5.16)

where α
(n)
ij is calculated below in formula (5.28), σn is defined in (2.4) with

σ0 = −2γεe(∂φ0/∂N),
∣∣σn − σ

∣∣ ≤ cqn, 0 < q < 1 (5.17)

where c > 0 and q depend on Γ and γ. From (2.4) it follows that

σn =

n∑
m=0

(−1)mγmAm
(
2γ(E,N)

)
εe. (5.18)

From (5.16) and (5.18) one obtains

P
(n)
i =

2

V

n∑
m=0

(−1)mγm+1

(2π)m

∫
Γ

tjB
m(Nj)dt V εeEj , (5.19)
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where

B ≡ 2πA. (5.20)

Therefore

α
(n)
ij (γ) =

2

V

n∑
m=0

(−1)mγm+1

(2π)m
J
(m)
ij , (5.21)

where

J
(m)
ij =

∫
Γ

tiB
m(Nj)dt. (5.22)

Let us prove that

J
(m)
ij = b

(m)
ij − 2πJ

(m−1)
ij , (5.23)

where b
(m)
ij is defined in (5.8). We have

J
(0)
ij =

∫
Γ

tiNj(t)dt =

∫
D

∂xi
∂xj

dx = V δij = b
(0)
ij , (5.24)

and

J
(1)
ij =

∫
Γ

siB(Nj)ds =

∫
Γ

dtNj(t)

∫
Γ

si
∂

∂Ns

1

rst
ds

=

∫
Γ

dtNj(t)

(∫
Γ

∂si
∂Ns

ds

rst
− 2πti

)
=

∫
Γ

∫
Γ

Ni(s)Nj(t)

rst
ds dt− 2πV δij

= b
(1)
ij − 2πJ

(0)
ij .

(5.25)

In a similar manner, one obtains

J
(m)
ij =

∫
Γ

ds siB
m(Nj) =

∫
Γ

dtNj(t)

∫
Γ

dt1ψ
(
t1, t

)

· · ·
∫
Γ

dtm−1ψ
(
tm−1, tm−2

)[ ∫
Γ

Ni(s)ds

rstm−1

− 2π
(
tm−1

)
i

]

= b
(m)
ij − 2πJ

(m−1)
ij .

(5.26)

From (5.26) it follows that

J
(m)
ij =

m∑
k=0

b
(k)
ij (2π)m−k(−1)m−k. (5.27)
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Using (5.27) and (5.21) one finds that

α
(n)
ij (γ) =

2

V

n∑
m=0

(−1)mγm+1

(2π)m

m∑
k=0

b
(k)
ij (2π)m−k(−1)m−k

=
2

V

n∑
k=0

b
(k)
ij

(−1)k

(2π)k
γn+2 − γk+1

γ − 1
.

(5.28)

Estimate (5.13) follows from (5.17). Theorem 5.1 is proved. �

5.2 Polarizability Tensors of Thin Metallic Screens

Let F be a thin metallic screen. Its polarizability tensor is defined as

Pi = αijEjεe, Pi =

∫
F

tiσ(t)dt, (5.29)

where σ(t) is the distribution of the charge induced by the exterior homo-

geneous electrostatic field E. Let ei, 1 ≤ i ≤ 3, be the orthonormal unit

vectors of the coordinate system, let E = ej, and let φ0 = −xj be the

potential corresponding to E. Then

Pi = αijεe. (5.30)

Let σn(t) be the approximate charge distribution constructed in (2.36).

Then

P
(n)
i =

∫
Γ

tiσn(t)dt ≡ α
(n)
ij εe. (5.31)

Thus

α
(n)
ij = ε−1

e

∫
Γ

tiσn(t)dt. (5.32)

Note that the index j is implicitly present in the right-hand side of (5.32)

because σn(t) is constructed for the initial field E = ej, or for the initial

potential φ0 = −xj . Thus, calculating the polarizability tensor is reduced

to finding σn according to Theorem 2.8 and to the calculation of the six

integrals in (5.32), 1 ≤ i ≤ j ≤ 3. The number of the integrals is six (and

not nine) because α
(n)
ij = α

(n)
ji .

Let F be a plane plate. Let e3 be orthogonal to F . Then αi3 = α3i = 0

and the polarizability tensor is defined by the three numbers α11, α22 and

α12 = α21.
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5.3 Polarizability Tensors of Flaky-Homogeneous Bodies

or a System of Bodies

1. The integral equation for the surface charge densities, induced by the

initial field, is given in Theorem 2.3. The nth approximation for the po-

larizability tensor of the flaky-homogeneous body is rather cumbersome.

Therefore only the first approximation will be considered. Let Aij be the

polarizability tensor

Pi = AijEjεe. (5.33)

There is no factor V in this definition ofAij because if the body is nonhomo-

geneous the matrix αij = AijV
−1 does not depend solely on the geometry

of the body. For the dipole moment of the flaky-homogeneous body one

has the formula

Pi =

p∑
j=1

∫
Γj

tiσj(t)dt. (5.34)

Substituting σ
(n)
j from Theorem 2.3 in (5.34) in place of σj yields the n−th

approximation to Pi,

P
(n)
i =

p∑
j=1

∫
Γj

tiσ
(n)
j (t)dt ≡ A

(n)
ij Ejεe. (5.35)

Let us take n = 1. From (5.35) and Theorem 2.3, it follows that (E =

−�φ0)

P
(1)
i =

p∑
j=1

εe

∫
Γj

ti

{
2γjNq(t)Eq − 2γ2jAj

(
EqNq(t)

)

− 2γjγm

p∑
m �=j,m=1

Tjm
(
EqNq(t)

)}
dt

=

{
p∑
j=1

α
(1)
iq

(
γj
)
Vj +

p∑
j=1

p∑
m �=j,m=1

α
(j,m)
iq

}
Eqεe,

(5.36)

where Vj is the volume of the body inside Γj ,

α
(1)
iq

(
γj
)
= 2δiq

(
γj + γ2j

)− γ2j
πVj

b
(1)
iq , (5.37)
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γj is given in (1.59) (compare (5.37)) and (5.10)), and

α
(j,m)
iq =

{
− γjγm

π b
(j,m)
iq , j > m

− γjγm
π b

(j,m)
iq + 4γjγmVmδiq, j < m,

(5.38)

where

b
(j,m)
iq =

∫
Γj

∫
Γm

Ni(t)Nq(s)

rst
ds dt. (5.39)

These formulas and their proof are quite similar to formulas (5.8)–(5.12).

From (5.35)–(5.39) one finds

A
(1)
iq =

p∑
j=1

α
(1)
iq

(
γj
)
Vj +

p∑
j=1

p∑
m �=j,m=1

α
(j,m)
iq , (5.40)

where α
(1)
iq (γj) and α

(j,m)
iq are defined in (5.37) and (5.38) respectively.

2. Let us derive an approximate formula for the polarizability tensor of

a system of bodies. We use Theorem 2.4 in the same manner as Theorem

2.3 was used. Let us define the polarizability tensor of a system of bodies

by

Pi = BijEjεe. (5.41)

Then, using the argument given in Section 5.1, one finds

B
(1)
iq =

n∑
j=1

α
(1)
iq

(
kj
)
Vj +

p∑
j=1

p∑
m �=j,m=1

α̃
(j,m)
iq , (5.42)

where kj is defined in (1.56), α
(1)
iq (kj) is defined in (5.37) with kj in place

of γj ,

α̃
(j,m)
iq = −kjkm

π
b
(j,m)
iq (5.43)

and b
(j,m)
iq is defined in (5.39).

If the jth body is a perfect conductor then kj = 1.

5.4 Variational Principles for Polarizability Tensors

1. The purpose of this section is to give variational principles for polariz-

ability tensors and to show how some two-sided estimates for polarizability

tensors can be obtained from these principles.
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Let E = ej , where ej is the coordinate unit vector, φ0 = −xj , E =

−�φ0. Suppose that the body is a perfect conductor. Then the induced

surface charge distribution σj(t) satisfies the equation

∫
Γ

σj(t)dt

4πεerst
= Uj + sj , Uj = const, (5.44)

and the electroneutrality condition∫
Γ

σjdt = 0. (5.45)

The quantity Uj is the potential of the conductor. The induced dipole

moment of the conductor is

Pi = αiqεeV Eq = αijεeV =

∫
Γ

tiσj(t)dt, (5.46)

because Eq = δjq . Therefore

V αij = ε−1
e

∫
Γ

tiσj(t)dt, αij = αji. (5.47)

Note that (5.45) and (5.44) imply∫
Γ

Ujσjdt = 0. (5.48)

From (5.44), (5.48), and (3.26) it follows that

V αij = 4π st

∫
Γ
tiφjdt

∫
Γ
tjφidt∫

Γ

∫
Γ
φi(t)φj(s)ds dt

rst

, (5.49)

where the admissible functions satisfy (5.45). For i = j the st in (5.49) can

be replaced by max.

V αjj = max4π

(∫
Γ

tjφjdt

)2(∫
Γ

∫
Γ

φj(t)φj(s)ds dt

rst

)−1

, (5.50)

where again φj satisfies (5.45). Principle (5.50) allows one to find lower

bounds for the diagonal elements of the polarizability tensor.

2. In order to find upper bounds for these elements we need another

variational principle. The energy U of the electrostatic field of the conduc-

tor is

U =
εe
2

∫
De

∣∣�φj ∣∣2dx, (5.51)
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where φj is the secondary potential corresponding to the initial field E =

ej , De is the exterior domain with the boundary Γ, and D = Di is the

conductor with the boundary Γ.

On the other hand the same energy is equal to

U =
εeV

2
αjj . (5.52)

Indeed, if P is the dipole moment, then U = 1
2 (P,E) = εeV

2 αimEmEi and

since Em = δjm one obtains (5.52). Thus

V αjj = min

∫
De

|�u|2dx, (5.53)

where the admissible functions u ∈ C1(De) satisfy the condition

u|Γ = Uj + sj , Uj = const . (5.54)

The minimum in (5.53) is attained at the solution of the problem

� φ = 0 in De, u|Γ = Uj + sj ,

∫
Γ

∂φ

∂N
dt = 0, φ(∞) = 0. (5.55)

The variational principle (5.53)-(5.54) allows one to obtain upper bounds

for αjj .

Example 5.1 Let Γ be a sphere with radius a. By symmetry one con-

cludes that αij = αδij , where α > 0 is a scalar. Let φj(t) = Yij(t), where Yij
are the spherical harmonics, Y11 = cos θ, Y12 = sin θ cosφ, Y13 = sin θ sinφ,

and t = (1, θ, φ). From (5.49) one finds that αij = 0 for i �= j. For i = j

it follows from (5.50) that αjj = α = 3. In this example we obtained the

exact value of α because of the symmetry.

3. Suppose that V → 0 and the body tends to a thin screen F with

the edge L. Then the variational principles (5.49), (5.50), and (5.53)-(5.54)

remain valid but the admissible functions should satisfy the edge condition.

The tensor

lim
V→0

αijV = α̃ij (5.56)

is the polarizability tensor of the screen F . Therefore the derivation of the

variational principles for the electric polarizability tensor of the metallic

screen has no new points.

4. Let us derive some variational principles for the magnetic polariz-

ability tensor βij . This tensor is defined as follows.
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Consider the boundary value problem

� φ = 0 in De, − ∂φ

∂Ne
= − ∂tj

∂N
= −Nj(t), φ(∞) = 0. (5.57)

This problem is a mathematical formulation of the physical problem of

finding the magnetic field around a superconductor (i.e., a body D inside

which the magnetic induction B = 0). On the surface Γ of this body

BN |Γ = 0. Outside the body divB = 0, curlH = 0, B = μ0H in De where

μ0 is the magnetic permittivity of the exterior medium. If H = ej − �φ =

�(xj − φ) then the condition BN |Γ = 0 can be written as

∂(xj − φ)

∂Ne

∣∣∣∣
Γ

= 0, or − ∂φ

∂Ne
= −Nj on Γ, (5.58)

which is the same condition as in (5.57). Let

φ = φj =

∫
Γ

σj(t)dt

4πμ0rxt
. (5.59)

Then from (5.58) it follows that

σj = Aσj − 2μ0Nj(t), Aσ =

∫
Γ

∂

∂Ns

1

2πrst
σ(t)dt (5.60)

and

σj =

(
∂φj
∂Ni

− ∂φj
∂Ne

)
μ0. (5.61)

The magnetic polarizability tensor is defined by the equation

V βpj = μ−1
0

∫
Γ

tpσj(t)dt, (5.62)

where V is the volume of the body D.

If we substitute (5.61) into (5.62), we obtain

V βpj =

∫
Γ

tp

(
∂φj
∂Ni

− ∂φj
∂Ne

)
dt =

∫
Γ

∂tp
∂N

φjdt−
∫
Γ

tp
∂tj
∂N

dt

=

∫
Γ

∂φp
∂Ne

φjdt− δpjV = −
∫
De

�φp�φjdx− δpjV.

(5.63)

In particular

V βjj + V = −
∫
De

∣∣�φj∣∣2dx, (5.64)
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V βpj =

∫
Γ

∂tp
∂N

φjdt− V δpj . (5.65)

The operator −∂/∂Ne is nonnegative-definite on the set of functions

on Γ which are restrictions on Γ of harmonic functions defined in De and

vanishing at infinity. This follows from the Green formula

−
∫
Γ

V
∂u

∂Ne
dt =

∫
De

�u�v dx = −
∫
Γ

u
∂v

∂Ne
dt. (5.66)

Therefore formulas (5.58) and (3.26) yield

−V βpj = st

∫
ΓNp(t)uj(t)dt

∫
ΓNj(t)up(t)dt

− ∫Γ ∂up

∂Ne
ujdt

+ V δpj , (5.67)

where the admissible functions uj(t) are harmonic in De and uj(∞) = 0.

If p = j then st in (5.67) can be replaced by max, obtaining

−(V + V βjj
)
= max

{(∫
Γ

Nj(t)uj(t)dt

)2(
−
∫
Γ

∂uj
∂Ne

ujdt

)−1
}
, (5.68)

or

−(V + V βjj
)
= max

{(∫
Γ

Njujdt

)2(∫
De

|�uj|2dx
)−1

}
. (5.69)

The maximum in (5.68), (5.69) is attained at the solution to (5.57).

Remark 5.2 Formulas (5.68), (5.69) remain valid if the admissible func-

tions u are not necessarily harmonic in De but are arbitrary functions

u ∈ C1(De), u(∞) = 0.

Proof. From (5.64) and (5.69) it follows that (5.69) can be written as

∫
De

|�u|2dx
∫
De

∣∣�φj ∣∣2dx ≥
(∫

De

�φj�ujdx
)2

=

(∫
Γ

Nj(t)ujdt

)2

.

(5.70)

The equality in (5.70) follows from Green’s formula.

Inequality (5.70) is just the Cauchy inequality and is valid for any u, φj
such that �u ∈ L2(De), �φj ∈ L2(De). �
Exercise 5.1 Prove that

−2π V βpj = δpj + st

∫
Γ

∫
ΓNp(t)σj(s)

ds dt
rst

∫
Γ

∫
ΓNj(t)σp(s)

ds dt
rst∫

Γ

∫
Γ{σp(t)−Aσp(t)}σj(s)ds dt

rst

,
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where A is defined in (5.60) and the admissible functions σj(t) ∈ C(Γ).

Remark 5.3 Principle (5.69) allows one to obtain lower bounds for βjj .

In order to obtain some upper bounds for βjj the variational principle

−V − V βjj = min

∫
De

∣∣qj∣∣2dx, (5.71)

where qj are arbitrary vector fields such that the integral (5.71) converges

and

div qj = 0 in De,
(
qj , N

)
= Nj(t) on Γ. (5.72)

Proof. In order to prove principle (5.71)-(5.72), note that if q satisfies

(5.72), then
∫
De

∣∣q − �φj
∣∣2dx =

∫
De

|q|2dx+

∫
De

∣∣�φj∣∣2dx− 2

∫
De

q�φjdx (5.73)

and∫
De

q�φjdx =

∫
De

div
(
qφj
)
dx−

∫
De

φj div q dx = −
∫
Γ

(q,N)φjdt

= −
∫
Γ

Njφjdt = −
∫
Γ

∂φj
∂Ne

ujdt =

∫
De

∣∣�φj ∣∣2dx.
(5.74)

From (5.73), (5.74) and (5.64) it follows that
∫
De

∣∣q − �φj
∣∣2dx =

∫
De

|q|2dx−
∫
De

∣∣�φj∣∣2dx
=

∫
De

|q|2dx+ V + V βjj

(5.75)

provided that q satisfies (5.72). Principle (5.71) follows from (5.75). The

minimum in (5.71) is attained at qj = �φj , where φj is the solution to

(5.57). �

5. Magnetic polarizability of screens. In connection with magnetic

polarizability, the screen is a model of a thin superconductor or a perfect

magnetic film. The latter case is of interest because thin magnetic films are

parts of the memory elements of computers.

Let us denote the magnetic polarizability tensor of the screen by

β̃ij = lim
V→0

V βij . (5.76)
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This definition is similar to (5.56). The new point, in comparison with

Section 5.3, is: if Γ is an unclosed surface one cannot look for a solution

to problem (5.57) of the form (5.59). Indeed the normal derivative of the

potential of a single layer (5.59) has a jump when x crosses Γ, while the

boundary condition in (5.57) shows that the normal derivative is continuous

when x crosses Γ. Therefore in the case when the body is an unclosed thin

surface F let us look for the solution of (5.57) of the form

ψj =

∫
F

ηj(t)
∂

∂Nt

1

4πμ0rxt
dt. (5.77)

It is known [38] that ∂ψj/∂N is continuous when x crosses F provided that

the surface F is smooth. We have

ψj ∼ (Mj , x)

4πμ0|x|3 , |x| −→ ∞, (5.78)

where

Mj ≡
∫
F

ηj(t)N(t)dt. (5.79)

The vector M is the induced magnetic moment. In particular,

Mjj =

∫
F

ηj(t)Nj(t)dt. (5.80)

Since the initial field H corresponds to the potential φ0 = −xj , we have

Mjj = μ0β̃jjHj = μ0β̃jj . (5.81)

Thus

β̃jj = μ−1
0

∫
F

ηj(t)Nj(t)dt, (5.82)

and

β̃pj = β̃jp = μ−1
0

∫
F

ηj(t)Np(t)dt. (5.83)

Let us consider the boundary condition

−∂ψj
∂N

= −Nj on Γ (5.84)
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as an equation for ηj . The function ψj must satisfy the edge condition

which can be formulated for this problem as

lim
ρ→0

∫
Sρ

ψj
∂ψj
∂N

ds = 0, (5.85)

where Sρ is the surface of the torus generated by a disk of radius ρ whose

center moves along the edge L of F so that the disk is perpendicular to

L. Condition (5.85) allows one to integrate over F as if F were a closed

surface. Namely
∫
F
=
∫
F+

+
∫
F−

, where F+(F−) is the upper (lower) side

of F . It does not matter which of the two sides is chosen as the upper one.

As V → 0, it follows from (5.69) that

−β̃jj = max

{(∫
F

Nj(t)uj(t)dt

)2(∫
De

∣∣�uj∣∣2dx
)−1

}
, (5.86)

where the maximum is taken over the set of harmonic functions satisfying

the edge condition (5.85). For example, one can take the admissible func-

tions of the form (5.77). The surface F is the surface of discontinuity for

the admissible functions.

Passing to the limit V → 0 in (5.71) yields

−β̃jj = min

∫
De

∣∣qj∣∣2dx, (5.87)

where qj satisfies (5.72) and the edge condition (1.18).

Principles (5.86) and (5.87) allow one to obtain lower and upper bounds

for β̃jj respectively.

From (5.53), (5.84), and (3.26) it follows that

−βpj = st

∫
F
Np(t)ηj(t)dt

∫
F
Nj(t)ηp(t)dt

− ∫
F

∂
∂Nt

{∫
F
ηp(s)

∂
∂Ns

1
4πrst

ds}ηj(t)dt
, (5.88)

where the admissible functions ηj(t) should satisfy the edge condition

(1.17). Principle (5.88) holds also for closed surfaces, in which case

β̃pj = V βpj .

The integral in the denominator of (5.88) can be transformed by means

of the identity [39]:

∂

∂Nt

∫
F

η(s)
∂

∂Ns

1

rst
ds =

∫
F

([
Ns, �̂sη

]
,
[
Nt, �̂sr−1

st

])
ds, (5.89)

where �̂ is the surface gradient and [a, b] is the vector product.
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6. Polarizability tensors for plane screens. Let the x3-axis be

perpendicular to the screen. If Γ = F in (5.49), (5.50) and F is a plane

domain on the (x1, x2)−plane, then α̃i3 = α̃3i = 0, for 1 ≤ i ≤ 3.

Similarly from (5.83) and (5.86) it follows that only β̃ ≡ β̃33 �= 0 if

Γ = F is a plane screen. From (5.86) it follows that

−β̃ = max

{(∫
F

u dt

)2(∫
De

|�u|2dx
)−1

}
, (5.90)

where the admissible functions u satisfy the edge condition, vanish at in-

finity, and are harmonic.

From (5.87) it follows that

−β̃ = min

∫
De

|q|2dx, (5.91)

where the admissible vectors satisfy the conditions

div q = 0 in De, q3|F = 1. (5.92)

Exercise 5.2 Derive from (5.67) that

−β̃ = max

{(∫
F

u(t)dt
)2(∫

F

∫
F

�̂tu(t)�̂su(s)ds dt
4π rst

)−1
}

(5.93)

7. The variational principles, i.e., principles involving a maximum or

minimum, were derived only for the diagonal elements of the polarizability

tensors. Nevertheless they allow one to obtain two-sided estimates for any

elements of the tensors.

To do so one can use the transformation properties of tensors and take

into account that any element of a selfadjoint matrix is a linear combination

of its diagonal elements in the coordinates in which the matrix is diagonal.
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Chapter 6

Iterative Methods: Mathematical
Results

6.1 Iterative Methods of Solving the Fredholm Equations

of the Second Kind at a Characteristic Value

The aim of this chapter is to provide in abstract setting some results which

justify the iterative processes given in Chapter 2.

1. Let A be a linear compact operator on a Hilbert space H , λn, φn
its characteristic values and eigenelements, φn = λnAφn, |λ1| < |λ2| ≤ |λ3|
≤ · · · . Let G1 ≡ {ψ : (I − λ̄1A

∗)ψ = 0} and G⊥
1 be its orthogonal

complement in H . The equation

g − λ1Ag = f (6.1)

is solvable if and only if f ∈ G⊥
1 .

Main assumption: λ1 is semisimple. (6.2)

This means that the pole λ = λ1 of the resolvent (I − λA)−1 is simple.

This also means that the root subspace of A corresponding to λ1 coincides

with the eigensubspace of A corresponding to λ1. The root subspace is

defined as follows. Let φ = λ1Aφ. Consider the equations

φ(j+1) − λ1Aφ
(j+1) = φ(j), j ≥ 0, φ(0) = φ. (6.3)

Only a finite number r of these equations are solvable ([44]). If (6.3)

has no solution for j = 0 then λ1 is semisimple. If (6.3) is solvable for

0 ≤ j ≤ r and is not solvable for j = r + 1 then the set {φ, φ(1), . . . , φ(r)}
is called the Jordan chain of length r + 1 associated with the pair (λ1, φ).

The elements φ(1), . . . , φ(r) are called root vectors of A corresponding to λ1.

The linear span of all eigenvectors and root vectors corresponding to λ1 is

67
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called the root space corresponding to λ1. The linear span of eigenvectors

corresponding to λ1 is called the eigenspace corresponding to λ1.

If the root space is one-dimensional then λ1 is called simple. If the root

space coincides with the eigenspace but has dimension greater than one

then λ1 is called semisimple. It can be proved that λ1 is semisimple if and

only if λ1 is a simple pole of (I − λA)−1 ([44]). It can also be proved that

λ1 is semisimple iff

(
I − λ1A

)2
φ = 0 =⇒ (

I − λ1A
)
φ = 0. (6.4)

Lemma 6.1 If λ1 is semisimple then equation (6.1) has at most one

solution in G⊥
1 .

Proof. It is sufficient to prove that the homogeneous equation (6.1) has

only trivial solutions in G⊥
1 . Suppose φ = λ1Aφ, φ ∈ G⊥

1 , φ �= 0. Since

G⊥
1 = R(I − λ1A), where R(A) denotes the range of A, and since G⊥

1 is

closed, because A is compact, the condition φ ∈ G⊥
1 implies that there

exists an f such that φ = (I−λ1A)f . Therefore (I−λ1A)2f = 0, and from

(6.4) it follows that (I − λ1A)f = 0, i.e., φ = 0. �

Remark 6.1 Equation (6.1) with semisimple λ1 is important because

most of the basic equations of electrostatic, magnetostatics, elastostatics,

and hydrodynamics of the ideal incompressible fluids are of this type. In

practice f in (6.1) belongs to G⊥
1 so that (6.1) is solvable. On the other

hand, λ1 is a characteristic value so that the resolvent (I −λA)−1 does not

exist at λ = λ1. Therefore solving equation (6.1) is an ill-posed problem:

small perturbations of f can produce large perturbations in the solution or

make equation (6.1) unsolvable. The theorems below show how to handle

this difficulty and how to construct a stable approximation to the solution

of (6.1).

Let {φj} be an orthonormal basis of N(I−λ1A) ≡ {φ : (I−λ1A)φ = 0}
and let {ψj} be an orthonormal basis of G1 = N(I − λ̄1A

∗), 1 ≤ j ≤ m.

Let P be the orthogonal projection of H onto G. Define

Bγg := Ag + γ
m∑
j=1

(
g, ψj

)
ψj (6.5)

and

rγ := min
(∣∣λ2∣∣, ∣∣λ1(1 + γλ1

)−1∣∣), (6.6)
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where γ is an arbitrary number which will be so chosen that rγ = |λ2| e.g.,
γ = −λ−1

1 and (·, ·) denotes the inner product in H .

Consider the equation

g = λ1Bγg + f, f ∈ G⊥
1 . (6.7)

It is clear that equations (6.7) and (6.1) are equivalent on G⊥
1 because the

sum in (6.5) vanishes if g ∈ G⊥
1 . Therefore every solution g ∈ G⊥

1 of (6.7)

is a solution of (6.1) and vice versa.

Theorem 6.1 The operator Bγ defined in (6.5) has no characteristic

values in the disk |λ| < rγ . If |λ1(1 + γλ1)
−1| > |λ2|, then the iterative

process

gn+1 = λ1Bγgn + F, g0 = F ≡ λ1Af − f, F ∈ G⊥
1 (6.8)

converges as a geometric series with ratio q, 0 < q < |λ1λ−1
2 |, to an element

g = φ − f , where φ ∈ N(I − λ1A) and Pφ = Pf . If dimG1 = 1, φ ∈
N(I − λ1A), ψ ∈ G1 and ‖ψ‖ = ‖φ‖ = 1, then φ = φ(f, ψ)/(φ, ψ). Process

(6.8) is stable: the sequence

hn+1 = λ1Bγhn + F + εn, h0 = F,
∥∥εn∥∥ < ε (6.9)

satisfies the estimate

lim sup
n→∞

∥∥g − hn
∥∥ = O(ε), (6.10)

where

g = lim
n→∞ gn. (6.11)

Theorem 6.2 If dimG1 = 1, then the iterative process

fn+1 = λ1Afn, f0 = f (6.12)

converges as a geometrical series with ratio q = |λ1λ−1
2 | to the element

aφ, φ ∈ N(I − λ1A), a = (f, ψ)/(φ, ψ). Here f ∈ H is arbitrary.

Proof of Theorem 6.1. If g = λBγg, then (g, ψj) = λλ−1
1 (g, ψj) +

λγ(g, ψj), or (g, ψj)(1−λλ−1
1 −λγ) = 0. If for some j, 1 ≤ j ≤ m, (g, ψj) �=

0, then λ = λ1(1 + λ1γ)
−1. If (g, ψj) = 0 for all 1 ≤ j ≤ m, then Bγg =

Ag, g = λAg, i.e., λ ∈ σ1(A), where σ1(A) is the set of all characteristic

values of A except λ1 . The value λ1 is excluded because if (g, ψj) = 0, 1 ≤
j ≤ m, then g = 0, since λ1 is semisimple. Therefore the disk |λ| < rγ
does not contain any characteristic values of Bγ . Our argument shows that



70 Iterative Methods for Solving Some Integral Equations

σ(Bγ) ⊂ {σ(A)} ∪ {λ1(1 + λ1γ)
−1}. If g = λBγg, g ∈ G⊥

1 then g = λAg.

Let us show that every λ ∈ σ1(A) belongs to σ(Bγ). It is sufficient to

prove that if g = λnAg, n > 1 then g ∈ G⊥
1 . In order to prove this, we

start with the identity (g, ψj) = λn(Ag, ψj) = λn(g,A
∗ψj) = λnλ

−1
1 (g, ψj).

Thus (g, ψj)(1 − λnλ
−1
1 ) = 0, 1 ≤ j ≤ m. Since λnλ

−1
1 �= 1 it follows

that g ∈ G⊥
1 . We have proved that every λ ∈ σ1(A) belongs to σ(Bγ)

and moreover the eigenvectors of A corresponding to λn, n > 1, are the

eigenvectors of B corresponding to λn.

Let us prove that process (6.6) converges. If γ is chosen so that |λ1(1+
γλ1)

−1| > |λ2| then there are no characteristic values of Bγ in the disk

|λ| < |λ2|. Therefore process (6.8) converges as the geometric series with

ratio 0 < q < |λ1λ−1
2 |. Since F ∈ G⊥

1 implies that AF = BγF , one

can see that g :=
∑∞

j=0 λ
j
1B

j
γF = F + λ1Bγg and Bγg = Ag. Therefore

g + f = λ1Af + λ1Bγg = λ1Af + λ1Ag = λ1A(g + f). This means that

h := g + f ∈ N(I − λ1A). Since Pg = 0 we have Ph = Pf . If dimG1 = 1

then dimN(I − λ1A) = 1. Let φ ∈ N(I − λ1A), ψ ∈ G1, ‖φ‖ = ‖ψ‖ = 1.

Then h = cφ, (h, ψ) = c(φ, ψ), i.e., c = (h, ψ)/(φ, ψ) = (f, ψ)/(φ, ψ). Note

that (φ, ψ) �= 0 because λ1 is semisimple, and (g, ψ) = 0 because g ∈ G⊥
1 .

Let us prove (6.10). We have

hn =
n∑
j=0

(
λ1Bγ

)j
F +

n−1∑
j=0

(
λjBγ

)j
εn−1−j ,

∥∥λ1Bγ∥∥ ≤ q < 1,

∥∥g − hn
∥∥ ≤ ε

n−1∑
j=0

qj +

∞∑
j=n+1

qj‖F‖ ≤ ε+ ‖F‖qn+1

1− q
.

This implies (6.10). �

Proof of Theorem 6.2. First let us formulate and prove a lemma.

Lemma 6.2 Let f(λ) be a function of the complex variable λ with values

in the set of linear bounded operators on a Banach space. Let f(λ) be

analytic in the disk |λ| < r and meromorphic in the disk |λ| < r + ε, ε > 0.

Suppose that λ1 is a simple pole of f(λ), Resλ=λ1f(λ) = c and f(λ) =∑∞
n=0 anλ

n for |λ| < r. If there are no other poles in the disk |λ| < r + ε,

then

lim
n→∞λn+1

1 an = −c. (6.13)

Proof of Lemma 6.2. The function f(λ) − c(λ − λ1)
−1 is analytic in

the disk |λ| < r+ε. Therefore f(λ)−c(λ−λ1)−1 =
∑∞

n=0 bnλ
n, |λ| < r+ε.



Iterative Methods for Solving Fredholm Equations 71

For |λ| < r the identity
∑∞
n=0 bnλ

n =
∑∞

n=0(an + cλ−n−1
1 )λn holds. This

identity can be analytically continued into the disk |λ| < r + ε. Thus

an + cλ
−(n+1)
1 → 0 as n→ ∞. This implies (6.13). �

Let us prove Theorem 6.2: The function (I − λA)−1f = Σ∞
j=0λ

jAjf is

analytic in the disk |λ| < |λ1|, has a simple pole at λ = λ1, and has no other

poles in the disk |λ| < |λ2|. Lemma 6.2 says that limn→∞ λn+1
1 Anf = −c

with the rate of convergence O(|λ1λ−1
2 |n). Since fn = λn1A

nf we conclude

that limn→∞ fn = h exists and h = λ1Ah. If dimN(I − λ1A) = 1, then

h = aφ, φ ∈ N(I − λ1A). Note that(
fn+1, ψ

)
= λ1

(
Afn, ψ

)
=
(
fn, ψ

)
= · · · = (f, ψ).

Therefore a(φ, ψ) = (f, ψ), a = (f, ψ)/(φ, ψ). Theorem 6.2 is proved. �

Remark 6.2 Process (6.12) is unstable in the sense that the process

hn+1 = λ1Ahn + εn,
∥∥εn∥∥ < ε, h0 = f (6.14)

can diverge because λ1 ∈ σ(A), where σ(A) is the set of characteristic values

of A.

Let φ ∈ N(I − λ1A), φ = ψ+ h, where ψ ∈ G1, h ∈ G⊥
1 . From φ = λ1Aφ it

follows that

h = λ1Ah+ F, F ≡ λ1Aψ − ψ, F ∈ G⊥
1 . (6.15)

A stable iterative process for solution of (6.15) is given in Theorem 6.1,

namely the process (6.8). In order to use it one must know a basis of

G1. In the case of electrostatics this basis is known explicitly (e.g., ψ =

1 in the case of a single conductor). In the general case one can find

numerically an approximation to a basis of G1. If {ψj}, 1 ≤ j ≤ m,

is an orthonormal basis of G1 and ‖ψjε − ψj‖ < ε, then the operator

Bγ,ε = λ1A + γ
∑m
j=1(·, ψjε)ψjε has no characteristic values in the disk

|λ| < |λ1|+δ where δ = δ(ε) > 0 and δ(ε) → (|λ2|− |λ1|) as ε→ 0 provided

that γ is chosen so that |λ1(1 + γλ1)
−1| > |λ2|. This follows from the

uniform convergence ‖Bγ,ε −Bγ‖ → 0 as ε→ 0.

Remark 6.3 One can use the following general principle in order to

construct a stable iterative process which converges to φ ∈ N(I − λ1A):

Suppose that a convergent iterative process for solutions of the equation

Bg = f is known for the exact data f . Then it is possible to construct a

stable iterative process for solving this equation with perturbed (noisy) data

fδ, ‖fδ − f‖ < δ.
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Indeed, let Snf be the nth approximation of the iterative process. We

assume that each Sn is a continuous operator. We have∥∥Snfδ − g
∥∥ ≤ ∥∥Snfδ − Snf

∥∥+ ∥∥Snf − g
∥∥. (6.16)

Here g solves the equation Bg = f . By our assumption∥∥Snf − g
∥∥ ≡ a(n) −→ 0 as n −→ ∞ (6.17)

and ∥∥Snfδ − Snf
∥∥ ≡ b(δ, n), b(δ, n) −→ 0 as δ −→ 0. (6.18)

The last limit is not uniform in n. Let us find for any given δ > 0 such n(δ)

that

b(δ, n) + a(n) = min := α(δ) (6.19)

It follows from (6.17), (6.18) that

n(δ) −→ ∞ as δ −→ 0, α(δ) −→ 0 as δ −→ 0. (6.20)

Therefore ∥∥Sn(δ)fδ − g
∥∥ −→ 0 as δ −→ 0. (6.21)

Let us summarize this observation.

Proposition 6.1 If a convergent iterative process for solution of the equa-

tion Bg = f is known, gn = Snf is the nth approximation of this process

and each operator Sn is continuous, then ‖Sn(δ)fδ − g‖ → 0 as δ → 0

provided that n(δ) is chosen from (6.19) and ‖fδ − f‖ ≤ δ.

In practice, if B is the linear operator I −A, then

Sn =
n∑
j=0

Aj ,
∥∥Sn∥∥ ≤ ‖A‖n+1 − 1

‖A‖ − 1

if ‖A‖ > 1, and ‖Sn‖ ≤ n + 1 if ‖A‖ ≤ 1. This gives an explicit estimate

for b(δ, n) (e.g., if ‖A‖ ≤ 1 then b(δ, n) ≤ δ(n + 1)). To estimate a(n) in

(6.19) one must use specific information about A. For example, under the

assumptions of Theorem 6.2 one has a(n) ≤ c|λ1λ−1
2 |n.

2. The spectral radius of a linear bounded operatorA on a Banach space

is defined as r(A) = limn→∞ ‖An‖1/n . This limit always exists ([44]). If

|λ| > r(A), then (A− λI)−1 exists and is bounded. Let us assume that

r(A) = 1, 1 /∈ σ(A). (6.22)
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It is clear that the equation

g = Ag + f (6.23)

is equivalent to the equation

g = Bg + f(1 + t)−1, t �= −1, B ≡ (A+ tI)(1 + t)−1. (6.24)

Consider the iterative process

gn+1 = Bgn + f(1 + t)−1, g0 = f(1 + t)−1, t > 0. (6.25)

Theorem 6.3 If (6.22) holds, then the solution g of equation (6.23) can

be obtained by the iterative process (6.25): g = limn→∞ gn. The process

converges as a geometric series.

Proof of Theorem 6.3. The equation

g = λBg + g0 (6.26)

coincides with (6.24) if λ = 1 and can be solved by iterations for sufficiently

small |λ|, |λ| < δ. Its solution

g(λ) =

∞∑
n=0

λnBng0 (6.27)

is analytic in the disk |λ| < δ. If g(λ) has no singular points in the disk

|λ| ≤ R, then the series (6.27) converges in this disk. If R > 1 then the

series converges for λ = 1 at the rate of the geometric series with ratio R−1.

Let us prove that for some R > 1 the function g(λ) is analytic in the

disk |λ| ≤ R. Let us rewrite (6.26)

g = zAg + bf, z =
λ

1 + t− λt
, b =

1

1 + t− λt
. (6.28)

The solution of (6.28) is analytic in a domain � of the complex plane z.

This domain includes the disk |z| < 1 and a neighborhood of the point

z = 1. For any t > 0 one can find R > 1 such that the disk |λ| ≤ R is

mapped by the function z = λ(1+t−λt)−1 onto a diskKr ⊂�. This implies

the conclusion of Theorem 6.3. Indeed, the function z = λ(1 + t − λt)−1

is analytic in the disk |λ| ≤ R, 1 < R < 1 + t−1, and maps this disk onto

Kr ⊂�. The solution g(z(λ)) to (6.26) is analytic in the disk |λ| ≤ R. Let

us to show that for some 1 < R < 1+ t−1 the function z = λ(1 + t− λt)−1

maps the disk |λ| ≤ R into �. Since z(λ) is linear fractional it maps

disks onto disks. Note that z(λ̄) = z(λ) where the bars denote complex
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conjugation. Therefore the circle |λ| = R is mapped onto the circle Kr

with the diameter [z(−R), z(R)], r = [z(R)− z(−R)]/2, and the center lies

on the real axis at the point [z(R) + z(−R)]/2. Hence Kr ⊂ Δ provided

that z(−R) > −1, |z(R) − 1| < α where α > 0 is sufficiently small. We

have z(−R) = −R(1 + t+ Rt)−1 > −1 if t > (R − 1)/(R + 1). If t > 0 is

fixed, then z(−R) > −1 when R < (1+ t)/(1− t) for t < 1, z(−R) > −1 for

any R > 0 when t ≥ 1. On the other hand, z(R) = R(1+ t− tR)−1 < 1+α

if R < (1 + α)(1 + t)/(1 + t(1 + α)) = 1 + α[1 + t(1 + α)]−1. Therefore

there exists R > 1 which satisfies the last inequality. We have proved that

for some R ∈ (1, 1 + t−1) the function z(λ) maps the disk |λ| ≤ R onto the

disk Kr ⊂ Δ. This completes the proof of Theorem 6.3. One can choose

t > 0 so that R will be maximal and the rate of convergence of the process

(6.25) will be fastest in this case. �

3. Let us formulate a well known theorem whose proof is left to the

reader. Let A be a linear bounded operator on a Banach space X and σ(A)

be its characteristic set (i.e., the image of the spectrum of A under the

mapping z → z−1).

Theorem 6.4 If σ(A) ⊂ {λ : |λ| > 1}, then for every f ∈ X the equation

g = Ag + f (6.29)

has a unique solution g, given by the iterative process

gn+1 = Agn + f, g = lim
n→∞ gn (6.30)

for any initial approximation g0. If there are points of σ(A) in the disk

|λ| < 1 then there exists a set E ⊂ X such that E is of the second category

and the process (6.30) diverges if f ∈ E and g0 = 0.

The set E is said to be of the second category if it is not a countable

union of nowhere dense sets.

6.2 Iterative Processes for Solving Some Operator

Equations

Let A be a selfadjoint linear operator on a Hilbert space H, ‖A‖ = 1.

Consider the equation

g = Ag + f. (6.31)
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The following theorem is proved in [53].

Theorem 6.5 Suppose that −1 is not a characteristic value of A and

(6.31) is solvable. Then the iterative process

gn+1 = Agn + f, (6.32)

converges to a solution of (6.31) for any g0 ∈ H.

Proof of Theorem 6.5. Let H1 be the eigenspace of A corresponding

to λ = 1 and let P1 be the projection on H1. If g is a solution to (6.31)

then g′ = g − P1g is also a solution to (6.31) and g′ ⊥ H1. Let us prove

that gn → g′ + P1g0 as n → ∞. Let 0 < δ < 1 and P2 :=
∫ 1−δ
−1+δ

dEλ,

P3 = I −P1 −P2, where A =
∫ 1

−1
λdEλ is the spectral representation of A.

The operator P3 is an orthoprojection and since −1 is not a characteristic

value of A, one has
∥∥P3f

∥∥ −→ 0 as δ −→ 0 for any fixed f ∈ H. (6.33)

Since APj = PjA and PiPj = 0 for i �= j one can rewrite (6.32) as

P1gn+1 = AP1gn + P1f, (6.34)

P2gn+1 = AP2gn + P2f, (6.35)

P3gn+1 = AP3gn + P3f. (6.36)

Since (6.31) is solvable, P1f = 0 and (6.34) shows that P1gn = P1g0. Let

H2 = P2H . The process (6.35) can be considered as an iterative process

for the restriction A2 of A to H2. Since ‖Aε‖ ≤ 1 − δ the process (6.35)

converges to h := P2g
′ which is the solution to the equation h = Ah+P2f .

Thus ‖P2gn − P2g
′‖ < ε for n > n(ε). Furthermore,∥∥∥P3

(
gn − g′

)∥∥∥ =
∥∥∥A(P3gn−1 − P3g

′)∥∥∥ ≤
∥∥∥P3

(
gn−1 − g′

)∥∥∥
≤ · · · ≤

∥∥∥P3

(
g0 − g′

)∥∥∥ < ε

provided that δ is sufficiently small (see (6.33)).

Now one has∥∥∥gn − (g′ + P1g0
)∥∥∥ ≤

∥∥∥P1

(
gn − g′ − g0

)∥∥∥+
∥∥∥P2

(
gn − g′

)∥∥∥
+
∥∥∥P3

(
gn − g′

)∥∥∥ < 2ε
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provided that n > n(ε) and δ is sufficiently small. This completes the

proof. �
The following result is discussed in [53], [113] and in [107].

Theorem 6.6 Every solvable linear equation with a bounded operator in

a Hilbert space H can be solved by an iterative process.

Proof of Theorem 6.6. Let the equation

Bg = f (6.37)

be solvable in H and B be a linear bounded operator. The equation

Ag ≡ B∗Bg = B∗f (6.38)

is equivalent to (6.37). Indeed, (6.37) implies (6.38). On the other hand,

since (6.37) is solvable f = Bh and (6.38) can be written as B∗B(g−h) = 0.

Multiplying this by g − h yields B(g − h) = 0, i.e., Bg = Bh = f . That is,

(6.38) implies (6.37).

Equation (6.38) can be written as

g = (I − kA)g + F, F = kB∗f, (6.39)

where k > 0 is a constant. Suppose that

0 < k < 2‖A‖−1. (6.40)

Then the operator I − kA is selfadjoint, −1 is not an eigenvalue of it and

‖I − kA‖ ≤ 1. By Theorem 6.5, equation (6.39) is solvable by the iterative

process

gn+1 = (I − kA)gn + F, (6.41)

with an arbitrary initial element g0 ∈ H . �
Remark 6.4 Assume 0 < m ≤ A ≤M. Then

‖I − kA‖ =
M −m

M +m
if k =

2

m+M
.

The following observation is useful ([143]).

Remark 6.5 Let B ≥ 0 be a linear operator on a Hilbert space H such

that equation (6.37) is solvable. Then the iterative process

gn+1 +Bgn+1 = gn + f, (6.42)

converges to a solution of (6.37) for any initial element g0 ∈ H.
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Proof of Remark 6.5. We have gn+1 = (I + B)−1gn + (I + B)−1f .

For the operator A = (I +B)−1 the assumptions of Theorem 6.5 hold and

Remark 6.5 follows from this theorem. �

6.3 Iterative Processes for Solving the Exterior and

Interior Boundary Value Problems

1. Let D be a bounded domain with a smooth boundary Γ, and De be the

exterior domain. Consider the problems

� u = 0 in D, u|Γ = f, (6.43)

� u = 0 in De,
∂u

∂Ne

∣∣∣∣
Γ

= f, u(∞) = 0, (6.44)

� u = 0 in De, u|Γ = f, u(∞) = 0, (6.45)

� u = 0 in D,
∂u

∂Ni
= f,

∫
Γ

f dt = 0. (6.46)

Define

v =

∫
Γ

σ(t)dt

4πrxt
, w =

∫
Γ

μ(t)
∂

∂Nt

1

4πrxt
dt. (6.47)

One has:

wie =
A∗μ∓ μ

2
, A∗μ =

∫
Γ

μ(t)
∂

∂Nt

1

4πrxt
dt. (6.48)

∂v

∂Nie
=
Aσ ± σ

2
, Aσ =

∫
Γ

σ(t)
∂

∂Ns

1

2πrst
dt, (6.49)

and ∂w/∂Ni = ∂w/∂Ne, provided that Γ is smooth. In (6.48) and (6.49)

the upper (lower) signs correspond to the upper (lower) subscript i(e).

Let u = w(μ) in (6.43) and u = v(σ) in (6.44). Then, using (6.48)–

(6.49), one gets:

μ = A∗μ− 2f, (6.50)

σ = Aσ − 2f. (6.51)
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It is known [38] that A and A∗ have no characteristic values in the disk

|λ| < 1 and only one characteristic value λ = −1 on the circle λ = 1. The

operators A and A∗ are compact in C(Γ) and H = L2(Γ) if Γ is smooth.

We have

Proposition 6.2 Theorem 6.3 is applicable to equations (6.50) and

(6.51).

Remark 6.6 Setting t = 1, B = A∗ in (6.25) yields the classical Neu-

mann process for solving the interior Dirichlet problem which reduces to

equation (6.51).

From (6.46) and (6.49) it follows that problem (6.46) can be reduced to

the integral equation

σ = −Aσ + 2f,

∫
Γ

f dt = 0. (6.52)

Equation (6.52) was discussed in detail in Chapter 2. Theorem 6.1 was

basic in this discussion and the crucial assumption (6.2) is fulfilled for the

operator A defined in (6.49). For this operator λ1 = −1 and this λ1 is

simple, i.e., dimN(I + A) = 1 and the function ψ = 1 belongs to N(I +

A∗) = G1. Condition (6.52) means that f ∈ G⊥
1 . Therefore equation (6.52)

can be solved by the iterative process:

σn+1 = −Aσn + 2f, σ0 = 2f (6.53)

or its modification (6.8) which guarantees the stability of the calculations

with respect to small errors.

2. Let us discuss problem (6.45). If u = w(μ), then μ = −A∗μ + 2f .

This equation may have no solutions and is not equivalent to problem (6.45)

because the solution to (6.45) is not necessarily representable by a double-

layer potential w. Therefore let us look for a solution to (6.45) of the form

u =
a

|x| +
∫
Γ

μ(t)
∂

∂Nt

1

4πrxt
dt, a = const (6.54)

From (6.54) and (6.48) it follows that

μ = −A∗μ+ 2

(
f − a

|s|
)
, (6.55)

where s is a point on the boundary Γ.
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Because the equation μ = −A∗μ has a non-trivial solution, let us con-

sider the equation

ν =Mν + 2

(
f − a

|s|
)
, Mν ≡ −A∗ν +

∫
Γ

ν dt. (6.56)

Proposition 6.3 The operator M has no characteristic values in the disk

|λ| ≤ 1, so that the iterative process

νn+1 =Mνn + 2

(
f − a

|s|
)
, (6.57)

converges (in C(Γ)) to the solution of equation (6.56) for an arbitrary initial

approximation ν0 ∈ C(λ). Moreover, one can choose a so that equation

(6.56) and (6.55) are equivalent, i.e., so that

∫
Γ

ν dt = 0. (6.58)

This will be true if

a =

∫
Γ

Qf dt

(∫
Γ

Q

(
1

|s|
)
ds

)−1

, Q := (I −M)−1. (6.59)

Proof of Proposition 6.3. First let us prove that the disk |λ| ≤ 1

contains no characteristic values of M . Let

ν = λMν = −λA∗ν + λ

∫
Γ

ν dt, (6.60)

and

u(x) =

∫
Γ

ν(t)
∂

∂Nt

1

4πrxt
dt. (6.61)

Then from (6.60), (6.61), and (6.48) it follows that

(1 + λ)ue = (1− λ)ui + λ

∫
Γ

(
ue − ui

)
dt. (6.62)

Multiplying (6.62) by ∂u
∂N = ∂u

∂Ne
= ∂u

∂Ni
one obtains

1 + λ

1− λ

∫
Γ

ue
∂u

∂Ne
dt =

∫
Γ

ui
∂u

∂Ni
dt+

λ

1− λ

∫
Γ

(
ue − ui

)
dt

∫
Γ

∂u

∂N
dt. (6.63)
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By Green’s formula
∫
Γ

ue
∂u

∂Ne
dt = −

∫
De

|�u|2dx ≤ 0,

∫
Γ

ui
∂u

∂Ni
dt =

∫
D

|�u|2dx ≥ 0,

∫
Γ

∂u

∂Ni
dt = 0.

(6.64)

From (6.64) and (6.63) it follows that (1+λ)(1−λ)−1 ≤ 0. Hence λ is real

and |λ| ≥ 1. It remains to be proved that λ = ±1 is not a characteristic

value of M . If λ = −1 then (6.63) shows that

∫
Γ

ui
∂u

∂Ni
dt =

∫
D

|�u|2dx = 0. (6.65)

Therefore u is constant in D, ∂u/∂Ni = 0 = ∂u/∂Ne. Hence u = 0 in De

and ν = ue − ui = const. Without loss of generality, suppose ν = 1 is a

solution to (6.60):

1 = A∗1− S, S := measΓ. (6.66)

Let ν0 be the electrostatic density, i.e.,

ν0 = −Aν0,
∫
Γ

ν0dt > 0. (6.67)

Multiplying (6.66) by ν0 and integrating over Γ one obtains∫
Γ

ν0dt =
(
ν0, A

∗1
)− S

∫
Γ

ν0dt,

or

(1 + S)

∫
Γ

ν0dt = −
∫
Γ

ν0dt. (6.68)

This is a contradiction. Therefore ν = 1 is not a solution to (6.60).

If λ = 1 then ν = −A∗ν +
∫
Γ v dt. The solvability condition is∫

Γ

ν dt

∫
Γ

ν0dt = 0. (6.69)

Thus ∫
Γ

ν dt = 0 (6.70)

and

ν = −A∗ν, (6.71)
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so that ν = const �= 0. This contradicts (6.70). Therefore λ = 1 is not

a characteristic value of M . The other statements of Proposition 6.3 are

obvious. �

Remark 6.7 In practice, in order to find a from formula (6.59) one can

use the processes

hn+1 =Mhn +
1

|s| , lim
n→∞hn = Q

(
1

|s|
)

(6.72)

and

vn+1 =Mvn + f, lim
n→∞ vn = Q(f), (6.73)

and then find a from (6.59).

3. Consider the third boundary value problem

� u = 0 in De, − ∂u

∂Ne
+ hu|Γ = f, u(∞) = 0, (6.74)

� u = 0 in D,
∂u

∂Ni
+ hu|Γ = f, (6.75)

h = h1 + ih2, h1 ≥ 0, h2 ≤ 0,
∣∣h1∣∣+ ∣∣h2∣∣ > 0. (6.76)

It is easy to prove that under the assumption (6.76) problems (6.74) and

(6.75) have at most one solution.

Let us look for the solution of (6.74) and (6.75) of the form

v =

∫
Γ

g(t)dt

4πrxt
. (6.77)

Then problems (6.74) is reduced to the equation

g = Ag − Tg + 2f, (6.78)

where A is defined in (6.49) and

Tg = h

∫
Γ

g(t)dt

2πrst
:= hT1g. (6.79)

The problem (6.75) is reduced to the equation

g = −Ag − Tg + 2f. (6.80)
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Consider the problem

g + Tg = λAg. (6.81)

Theorem 6.7 If (6.76) holds then all the eigenvalues of (6.81) satisfy

the inequality |λ| > 1 and they are real if h > 0. Moreover the equation

g + Tg = λAg + F, λ = ±1 (6.82)

can be solved by the iterative process

gn+1 + Tgn+1 = λAgn + F, (6.83)

where g0 ∈ H = L2(Γ) is arbitrary. This method converges as a geometric

series.

Remark 6.8 The iterative process

gn+1 + Tgn = Agn + F, (6.84)

with an arbitrary g0 ∈ H converges if 0 < h < k, where

k := min

{∫
D

|�u|2dx
(∫

Γ

|u|2dt
)−1

}
. (6.85)

Proof of Theorem 6.7. Let us rewrite (6.81) as

(1 − λ)
∂v

∂Ni
+ 2hv = (1 + λ)

∂v

∂Ne
, (6.86)

where v is defined in (6.77). Multiplying (6.86) by v̄ and integrating over

Γ yields

1− λ

1 + λ
A+ h

B
1 + λ

= C, (6.87)

where

A =

∫
Γ

∂v

∂Ni
v̄ dt > 0, B = 2

∫
Γ

|v|2dt > 0, (6.88)

C =

∫
Γ

∂v

∂Ne
v̄ dt < 0. (6.89)

If A, B, or C is zero then v = 0. Let λ = a+ ib. Taking real and imaginary

parts of (6.87) yields

(1− a2 − b2)A+ [h1(1 + a) + h2b]B
(1 + a)2 + b2

= C < 0, (6.90)
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and

−2bA+ [h2(1 + a)− h1b]B
(1 + a)2 + b2

= 0, (6.91)

Hence (
1− |λ|2)A+

[
h1(1 + a) + h2b

]B < 0, (6.92)

h2 =
h1B + 2A
1 + a

b. (6.93)

Suppose that |λ| ≤ 1. Since h2 ≤ 0, h1 ≤ 0, and |a| ≤ |λ| ≤ 1, it follows

from (6.92) that b ≤ 0. Thus h2b > 0. Therefore (6.92) cannot be valid.

This contradiction proves that |λ| > 1. If h = h1 > 0, h2 = 0, then b = 0,

i.e., all the eigenvalues are real-valued. In order to prove that the process

(6.83) converges, let us consider the equation

g = λGg +Q, (∗)
where G := (I + T )−1A,Q := (I + T )−1F . The operator (I + T )−1 exists

and is bounded because T is compact and (I +T )f = 0 implies that f = 0.

The latter conclusion follows immediately from the positive definiteness of

the operator Re(I + T ) = I + h1T1, T1 > 0, h1 ≥ 0. The operator G has no

characteristic values in the disk |λ| ≤ 1 (as was proved above). Therefore

the iterative process

gn+1 = Ggn +Q, (6.94)

with an arbitrary g0 ∈ H , converges at the rate of a geometric series to the

solution of the equation (∗). The process (6.94) is equivalent to (6.83) and

equation (6.82) is equivalent to (∗). Theorem 6.7 is proved. �

Proof of Remark 6.8. Consider the equation

g = λ(−T +A)g. (6.95)

If the characteristic values |λj | > 1 then process (6.84) converges. Let us

find when |λj | > 1. Let us rewrite (6.95) as

(1 − λ)
∂v

∂Ni
+ 2λhv = (1 + λ)

∂v

∂Ne
. (6.96)

From (6.96) it follows that

(1 − μ)A+ μhB = (1 + μ)C, (6.97)



84 Iterative Methods for Solving Some Integral Equations

where A, B, C are defined in (6.88) and (6.89).

If h > 0 then as in the proof of Theorem 6.7 one can show that if

λ = a+ ib then

(1 − a)A+ ahB = (1 + a)C, (6.98)

−bA+ bhB = bC. (6.99)

If b �= 0 then from (6.99) and (6.98) it follows that A = C. This is a

contradiction because of (6.88), (6.89). Thus b = 0, λ = a, and

1− a

1 + a
A+

a

1 + a
hB < 0. (6.100)

Suppose that |a| < 1. Then (6.100) cannot hold for 0 ≤ a ≤ 1. If −1 <

a < 0 then (6.100) can be written as

∫
D |�u|2dx∫
Γ |u|2dt

<
2|a|h
1− |a|

1− |a|
1 + |a| =

2|a|h
1 + |a| < h. (6.101)

Since |a| < 1, one has 2|a|h/(1 + |a|) < h. Therefore (6.101) cannot hold if

k > h, where k is defined in (6.85).

If a = −1 then (6.98) shows that

2A = hB,
∫
D

|�u|2dx
(∫

Γ

|u|2dt
)−1

= h. (6.102)

If k > h the equality (6.102) cannot hold. This argument proves that if

k > h > 0 then the process (6.84) converges.

If h > k then equation (6.98) does not lead to a contradiction even if

|a| < 1. In this case it is not known if the process (6.84) diverges for some

F . �

4. Consider the problem

� u = 0 in D, u|Γ = f1,
∂u

∂Ni

∣∣∣∣
Γ2

= f2, Γ1 ∪ Γ2 = Γ, (6.103)

Γ1 ∩ Γ2 = ∅,Γ1 �= ∅, where ∅ denotes the empty set. This problem was

studied probably for the first time by Zaremba (1910). It has at most one

solution. Numerical approaches to this problem have been studied recently

by many authors and by means of various techniques (see [161] and the
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bibliography in this paper). In this section a simple approach taken from
[91] is discussed. Consider the problem

� vh = 0 in D,
∂vh
∂Ni

+ h(s)vh|Γ = F, (6.104)

F =

{
hf1 on Γ1

f2 on Γ2

, h(s) =

{
h on Γ1

0 on Γ2

, h = const > 0. (6.105)

The idea is to first solve (6.104) by an iterative process and then to

show that vh → u as h→ +∞ and to establish the estimates

∥∥u− vh
∥∥
H1

≤ ch−1,
∥∥u− vh

∥∥
H̃2

≤ ch−1. (6.106)

Here and below c > 0 denotes various constants, H1 = W 1
2 is the Sobolev

space [44], and H̃2 = W 2
2 (D̃), where D̃ ⊂ D is any fixed strictly inner

subdomain of D, i.e., dist(D̃, ∂D) > 0 where ∂D is the boundary of D and

D̃ is the closure of D̃.

Theorem 6.8 The solution of (6.104) exists, is unique, and satisfies

(6.106) where u is the solution of (6.103). Furthermore the solution of

(6.104) can be calculated by means of the iterative process described in The-

orem 6.7.

Proof of Theorem 6.8. Let wh = vh − u. Then

� wh = 0 in D,
∂wh
∂N

∣∣∣∣
Γ2

= 0,
∂wh
∂N

+ hwh

∣∣∣∣
Γ1

= − ∂u

∂N

∣∣∣∣
Γ1

.

From this it follows that∫
Γ

wh
∂wh
∂N

dt+ h

∫
Γ1

|wh|2dt = −
∫
Γ1

wh
∂u

∂N
dt.

Therefore∫
D

∣∣�wh∣∣2dx+ h

∫
Γ1

∣∣wh∣∣2dt ≤ c
∥∥wh∥∥L2(Γ1)

, c =

∥∥∥∥ ∂u∂N
∥∥∥∥
L2(Γ1)

.

Thus

∥∥wh∥∥L2(Γ1)
≤ ch−1,

∫
D

∣∣�wh∣∣2dx ≤ c2h−1. (6.107)
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From (6.107) and the inequality

∥∥wh∥∥L2(D)
≤ C1

(∥∥�wh∥∥L2(D)
+
∥∥wh∥∥L2(Γ1)

)
(6.108)

where C1 = C1(D,Γ1), the first estimate (6.106) follows. The second esti-

mate (6.106) follows from the inequality

∥∥wh∥∥H̃2
≤ C2

(∥∥ � w
∥∥
L2(D)

+ ‖w‖L2(D)

)

which is valid for any function w ∈ W 2
2 (D) and any D̃ ⊂ D which is a

strictly inner subdomain of D [44].

It remains to be proved that problem (6.104) can be solved by an iter-

ative process.

To this end one can use a generalization of Theorem 6.7. Define T as

in (6.70) with h = h(s), where h(s) is defined in (6.105). Alternatively, one

may assume that 0 < m ≤ h(s) ≤ M and that h is a piecewise-continuous

function. The conclusion and the proof of Theorem 6.7 remain valid. The

only new point in the proof is the invertibility of the operator I + T . This

new point is discussed in the following lemma. �

Lemma 6.3 Under the above assumptions on h(s), the operator (I+T )−1

is bounded and defined on all of H = L2(Γ).

Proof of Lemma 6.3. Since T is compact it is sufficient to prove that

(∗)f + Tf = 0 implies f = 0. If 0 < m ≤ h(s) ≤ M and h−1/2f = g then

g + Sg = 0, where S = h1/2T1h
1/2 and T1 is defined in (6.79). Therefore

S ≥ 0 and I + S ≥ I. Thus g = 0 and f = 0. If h(s) is defined in (6.105)

then (∗) shows that f = 0 on Γ2 and

f(s) + h

∫
Γ1

f(t)dt

2πrst
= 0, s ∈ Γ1, h > 0. (6.109)

Since the kernel r−1
st is positive semidefinite, (6.109) implies that f = 0 on

Γ1. This completes the proof. �

6.4 An Iterative Process for Solving the Fredholm

Integral Equations of the First Kind with Pointwise

Positive Kernel

In Section 2.4 a problem of practical interest was discussed, reduced to

equation (2.35), and solved by means of the iterative process (2.36). Here
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we give a theoretical justification of this process in a general setting.

Consider the equation

Kf =

∫
D

K(x, y)f(y)dy = g(x), x ∈ D ⊂ Rr, (6.110)

whereD is a bounded domain, the operatorK : L2(D) → L2(D) is compact

and

K(x, y) > 0 (6.111)

almost everywhere. Suppose there exists a function h(x) > 0 such that

Kh ≤ c and
∫
D a(x)dx < ∞, where a(x) := h(x)/(Kh(x)). Let φ =

fa−1(x) and H± = L2(D, a±1(x)), ‖f‖2± =
∫
D
|f |2a±1(x)dx. Let us rewrite

(6.110) as

K1φ = g, K1φ ≡
∫
D

K(x, y)a(y)φ(y)dy = Kaφ. (6.112)

Let

Q = I −K1, K1fj = λjfj , λ1 >
∣∣λ2∣∣ ≥ ∣∣λ3∣∣ ≥ · · · (6.113)

The first eigenvalue of the integral operators with pointwise positive kernels

is positive and simple, i.e., the corresponding eigenspace is one dimensional

(Perron-Frobenius theorem for matrices, Jentsch theorem for integral oper-

ators, Krein-Rutman theorem for abstract operators [164]). Let us assume

that

g(x) ∈ H+, (6.114)

0 < c1(�) ≤
∫
�
K(x, y)a(y)dy ≤ c2(�), x ∈ D, (6.115)

where �⊂ D, meas �> 0,

equation (6.112) is solvable in H+, (6.116)

the eigenfunctions
{
fj
}
form a Riesz basis of H+, (6.117)

∣∣ argλj∣∣ ≤ π

3
, λj �= 0. (6.118)
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Theorem 6.9 If the above assumptions (6.111)–(6.118) hold, then the

iterative process

φn+1 = Qφn + g, φ0 = g (6.119)

converges in H+ to a solution φ of (6.112), the function f = aφ solves

(6.110), and f ∈ H−.

Remark 6.9 A complete minimal system {fj} ⊂ H forms a Riesz basis

of the Hilbert space H if for any numbers c1, . . . , cn and any n the inequality

a

n∑
j=1

∣∣cj∣∣2 ≤
∥∥∥∥

n∑
j=1

cjfj

∥∥∥∥
2

≤ b

n∑
j=1

∣∣cj∣∣2, a > 0 (6.120)

holds, where a and b do not depend on n.

Proof of Theorem 6.9. Let φ be a solution to (6.112), gn = φ − φn.

Then gn = Qng. Let g
∑∞

j=1 cjfj. Then

gn =
∞∑
j=1

(
1− λj

)n
cjfj , and

∣∣λj ∣∣ < 1 if j ≥ 2.

From (6.118) it follows that |1 − λj | < 1. Indeed, if λ = r exp(iψ), r <

1, |ψ| ≤ π/3, then |1 − λ|2 = 1 + r2 − 2r cosψ ≤ 1 + r2 − r < 1. Hence

|1 − λj |n → 0 as n → ∞. Therefore ‖gn‖2 ≤ b
∑∞
j=1 |1 − λj |2n|cj |2 → 0

as n → ∞. This means that ‖φn − φ‖H+ → 0 as n → ∞. The rest is

obvious. �

Example 6.1 Let Γ = {x : |x| = 1}, m = 2. Equation (6.110) is of the

form

Af =

∫ π

−π
ln

∣∣∣∣ 1

2 sin φ−φ′
2

∣∣∣∣f(φ′)dφ′ = g(φ), −π ≤ φ ≤ π. (6.121)

Since
∫ π
0 ln sinx dx = −π ln 2 one has

∫ π

π

ln

∣∣∣∣ 1

2 sin φ−φ′
2

∣∣∣∣dφ′ = 0.

Therefore f0 = (2π)−1 is the solution of the homogeneous equation (6.121).

In this example equation (6.121), if solvable, is equivalent to the equation

Bf = −
∫ π

−π
ln
∣∣∣ sin{(φ − φ′)/2

}∣∣∣f(φ′)dφ′ = g(φ), −π ≤ φ ≤ π (6.122)
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with the pointwise positive and selfadjoint kernel, provided that one looks

for a solution of (6.121) which satisfies the condition
∫ 2π

0
f du = 0. In this

example a(x) = (2π ln 2)−1 := a, B1 = aB, f = aψ and (6.119) takes the

form

ψn+1(φ) = ψn(φ) + (2π ln 2)−1

∫ π

−π
ln
∣∣ sin{(φ− φ′)/2}∣∣

× ψn(φ
′)dφ′ + g(φ)ψ0 = g(φ).

(6.123)

Let g(φ) = cosφ. Since

− ln

∣∣∣∣ sin φ
′ − φ

2

∣∣∣∣ = ln 2 +

∞∑
m=1

cos{m(φ′ − φ)}
m

(6.124)

one has

B cosφ = π cosφ; −B1 cosφ = −(2 ln 2)−1 cosφ. (6.125)

With this in mind, one concludes from (6.123) that

ψ1 = cosφ
(
2− (ln 4)−1

)
= c1 cosφ,

ψ2 =
(
1 + c1

)
cosφ− c1(ln 4)

−1 cosφ ≡ c2 cosφ,

and

ψn+1 = cn+1 cosφ, cn+1 =
(
1 + cn

)− cn(ln 4)
−1. (6.126)

Thus

cn+1 = qcn + 1, c0 = 1, q = 1− (ln 4)−1 = 0.28. (6.127)

Therefore

lim cn = c = ln 4 = 2 ln 2,

ψ = limψn = 2 ln 2 cosφ,∣∣ψ − ψn
∣∣ ≤ (1− q)−1qn+1,

f = π−1 cosφ.
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Chapter 7

Wave Scattering by Small Bodies

7.1 Introduction

Wave scattering by small bodies is of great interest in theory and applica-

tions. An incomplete list of problems for which wave scattering by small

bodies is of prime importance includes: radio wave scattering by rain and

hail, light scattering by cosmic dust, light scattering in colloidal solutions,

light propagation in muddy water, wave scattering in a medium consisting

of many small particles, ultrasound mammography, finding small cracks

and holes in metals and other materials, detecting mines and other subsur-

face inhomogeneities from the scattered field, measured on the surface, etc.

We will show that the skin effect for thin wires and radiation from small

holes are a particular examples of the the theory of wave scattering by

small bodies. The number of examples is practically unlimited. The theory

was originated by Rayleigh (1871) who contributed to this field until his

death (1919). Rayleigh understood that the main term in the scattering

amplitude in the problem of wave scattering by a small body with diameter

much less than the wavelength of the incident field is the dipole radiation.

J. J. Thomson (1893) realized that for a small perfect conductor the mag-

netic dipole radiation is of the same order as the electric one. Some efforts

were made in order to develop an algorithm for finding the expansion of

the scattered field in powers of ka, where k is the wave number and a is

the characteristic dimension of the scatterer, ka� 1 ([151], [50]). Since in

many cases the first term of this expansion already provides a good approx-

imation we will only discuss this first approximation. The general idea of

our presentation is very simple. First, it will be shown that a low-frequency

approximation to the scattering matrix can be calculated if the electric and

magnetic polarizability tensors for the scatterer are known. In this chapter
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92 Wave Scattering by Small Bodies

an explicit formula for the scattering matrix, S-matrix is derived. The en-

tries of this matrix are expressed in terms of the polarizability tensors, for

which approximate analytical formulas are derived in Chapter 5. These

formulas allow one to calculate the polarizability tensors with any desired

accuracy. Therefore we have derived explicit approximate analytical for-

mulas for the S-matrix, which allow one to compute this matrix with any

desired accuracy. Using these formulas one can write computer codes for

calculating the scattering matrix for small bodies of arbitrary shapes. Ex-

act solutions in closed form for the exterior problems of potential theory

for bounded bodies in the three dimensional space are not known, except

for ellipsoids.

The other important point which should be emphasized is that we study

dependence of the scattering matrix on the boundary condition.

We study wave scattering by many small bodies. Two cases are con-

sidered: first, when the number r of these bodies is of order 10, not very

large, and second, when this number is very large, say, of order 1023, so

that one has a medium consisting of many small bodies. In the first case,

the smallness of the bodies allows one to reduce the problem to a linear

algebraic system (see, e.g., equation (7.71) below), rather than to a sys-

tem of integral equations, as in the case of wave scattering by many bodies

which are not small. The scattering amplitude in the case of small bodies

of arbitrary shapes is determined by finitely many numbers, which have

physical meaning. In the second case, one derives an integro-differential

equation (see equation (7.81)), or an integral equation in the simplest case,

(see equation (7.62)), for the self-consistent field in the medium consisting

of many small particles (see [146], [113]).

7.2 Scalar Wave Scattering: The Single-Body Problem

1. Consider the problem
(
�2 + k2

)
v = 0 in D′ := De, (7.1)

∂v

∂N
− hv|Γ =

(
− ∂u0
∂N

+ hu0

)∣∣∣∣
Γ

, (7.2)

|x|
(
∂v

∂|x| − ikv

)
−→ 0 as |x| −→ ∞, (7.3)
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where u0 is the incident field, D
′ is the exterior domain with smooth bound-

ary Γ, h = const, h = h1 + ih2, h2 ≤ 0, h1 ≥ 0, k > 0, D = R3 \D′ is the
interior bounded domain. Let us look for a solution of (7.1)–(7.3) of the

form

v(x) =

∫
Γ

g(x, s, k)σ(s)ds, g =
exp(ik|x− s|)

4π|x− s| . (7.4)

The scattering amplitude f(n, k) is defined by the formula

v ∼ exp(ik|x|)
|x| f(n, k), |x| −→ ∞, n = x|x|−1. (7.5)

From (7.4) and (7.5) it follows that

f(n, k) = (4π)−1

∫
Γ

exp
{− ik(n, s)

}
σ(s)ds. (7.6)

Substituting (7.4) into (7.2) yields

σ = A(k)σ − hT (k)σ − 2hu0 + 2
∂u0
∂N

, (7.7)

where

A(k)σ = 2

∫
Γ

∂

∂Ns
g(s, t, k)σ(t)dt, (7.8)

T (k)σ = 2

∫
Γ

g(s, t, k)σ(t)dt. (7.9)

Let us expand σ, A(k), T (k), and u0 in powers of k.

σ = σ0 + ikσ1 +
(ik)2

2
σ2 + · · · , (7.10)

A(k) = A+ ikA1 +
(ik)2

2
A2 + · · · , (7.11)

T (k) = T + ikT1 +
(ik)2

2
T2 + · · · , (7.12)

u0 = u00 + iku01 +
(ik)2

2
u02 + · · · , (7.13)
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From (7.10)–(7.13) and (7.7) it follows that

σ0 = Aσ0 − hTσ0 − 2hu00 + 2
∂u00
∂N

, (7.14)

σ1 = Aσ1 − hTσ1 +A1σ0 − hT1σ0 − 2hu01 + 2
∂u01
∂N

, (7.15)

σ2 = Aσ2 − hTσ2 +A2σ0 + 2A1σ1 − hT2σ0

− 2hT1σ1 − 2hu02 + 2
∂u02
∂N

.
(7.16)

From (7.15) and (7.6) it follows that

4πf =

∫
Γ

[
1− ik(n, s) +

(ik)2

2
(n, s)2 + · · ·

][
σ0 + ikσ1 +

(ik)2

2
σ2 + · · ·

]
ds

=

∫
Γ

σ0ds+ ik

[∫
Γ

σ1ds−
∫
Γ

(n, s)σ0ds

]

+
(ik)2

2

[ ∫
Γ

σ2ds− 2

∫
Γ

(n, s)σ1ds+

∫
Γ

σ0(n, s)
2ds

]
+ · · ·

(7.17)

Let us assume that

u0 = exp
{
ik(ν, x)

}
. (7.18)

Then

u00 = 1, u01 = (ν, s), u02 = (ν, s)2

∂u00
∂N

= 0,
∂u01
∂N

= (ν,N),
∂u02
∂N

= 2(ν, s)(ν,N).
(7.19)

We note that the following formulas hold

Aσ =

∫
Γ

∂

∂Ns

1

2πrst
σ(t)dt, A1σ = 0, (7.20)

−
∫
Γ

Aσdt =

∫
Γ

σ dt, (7.21)

Tσ =

∫
Γ

σ dt

2πrst
, (7.22)
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T1σ = (2π)−1

∫
Γ

σ(t)dt. (7.23)

Let us integrate (7.14) over Γ and take into account (7.19)–(7.21). This

yields

2

∫
Γ

σ0dt = −2hS − h

∫
Γ

∫
Γ

σ0(t)dt ds

2πrst
, S = measΓ,

or ∫
Γ

σ0dt = −hS − h

4π

∫
Γ

∫
Γ

σ0(t)dt ds

rst
. (7.24)

The exact value of σ0 should be found from the integral equation (7.14).

An approximate value of
∫
Γ σ0dt can be found from (7.24) if one uses the

approximation∫
Γ

ds

rst
≈ 1

S

∫
Γ

dt

∫
Γ

ds

rst
= JS−1, J ≡

∫
Γ

∫
Γ

r−1
st ds dt. (7.25)

From (7.25) and (7.24) it follows that∫
Γ

σ0dt ≈ − hS

1 + hJ(4πS)−1
. (7.26)

In Chapter 3 the approximate formula

C ≈ C(0) = 4πS2J−1, ε0 = 1 (7.27)

was given. Combining (7.26) and (7.27) yields∫
Γ

σ0dt = −hS(1 + hSC−1
)−1

. (7.28)

Therefore

f(n, k) ≈ −hS(1 + hSC−1
)−1u00

4π
. (7.29)

If h = ∞, i.e., the scatterer is a perfect conductor, then

f = − C

4π
u00. (7.30)

From (7.29) and (7.30) it follows that the scattering from a small body of

arbitrary shape under the Dirichlet boundary condition (i.e., acoustically

soft body, h = ∞) or under the impedance boundary condition (h < ∞) is

isotropic and the scattering amplitude is of order a, where a is the charac-

teristic dimension of the scatterer.
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Note that if the scatterer is not too prolate then C ∼ a. We also

assumed above that h is not too small, e.g., hS > C−1.

The scattering amplitude f = −Cu00

4π

(
1 + ikaf1 + O((ka)2)

)
, where

ka << 1 and f1 is a real number, because of the property f(−k) = f(k),

where the overbar stands for complex conjugate. Therefore, the differential

cross-section is |f |2 = C2|u00|2
16π2

(
1 + O((ka)2

)
. If ka < 0.1, then the first

term (7.30) is practically the dominant term since the next term is of order

of 10−2 of the main term in the formula for the differential cross-section,

which is measured in experiments. A similar remark holds in relation to

(7.39) below.

3. Consider now the case when h = 0, i.e., the case of the acoustically

rigid body. We shall see that in this case the scattering is anisotropic, is

defined by the magnetic polarizability tensor and the scattering amplitude is

of order k2a3. If h = 0 then (7.14) takes the form σ0 = Aσ0 and therefore

σ0 = 0 since 1 is not an eigenvalue of A. Equation (7.15) takes the form

σ1 = Aσ1 + 2
∂u01
∂N

. (7.31)

Integrating (7.31) over Γ and using (7.21) yields

∫
Γ

σ1dt =

∫
Γ

∂u01
∂N

dt =

∫
D

Δu01dx = 0, (7.32)

since Δu00 = 0 and Δu01 = 0. The latter equations follow from the equa-

tion

(
Δ+ k2

)
u0 = 0

and the asymptotic expansion (7.13).

Thus, in the case h = 0 formula (7.17) takes the form

4πf(n, k) = −k
2

2

∫
Γ

σ2ds+ k2
∫
Γ

(n, s)σ1ds. (7.33)

For the initial field (7.18) it follows from (7.31) that

(
n,

∫
Γ

sσ1ds

)
= −V βpqνqnp. (7.34)

Here and below one should sum over the repeating indices, V denotes the

volume of the scatterer and βpq is the magnetic polarizability tensor defined

in Chapter 5 as V βpq = μ−1
0

∫
Γ
spσq(s)ds, where σq is the solution of the
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equation σq = Aσq − 2Nq and N is the unit outer normal to Γ. In order to

calculate the term
∫
Γ
σ2ds, let us rewrite (7.16) for h = 0 as

σ2 = Aσ2 + 2
∂u02
∂N

. (7.35)

Here we have used (7.20) and took into account that σ0 = 0. From (7.19)

and (7.35) it follows that

σ2 = Aσ2 + 4(ν, s)(ν,N). (7.36)

Integrating (7.36) over Γ and taking into account (7.21) yields
∫
Γ

σ2dt = 2

∫
Γ

(ν, s)(ν,N)ds = 2

(
ν,

∫
Γ

N(ν, s)ds

)

= 2

(
ν,

∫
D

�(ν, x)dx
)

= 2(ν, ν)V = 2V.

(7.37)

From (7.33), (7.34), and (7.37) it follows that if h = 0 and the initial field

is given by (7.18) then the scattering amplitude is:

f(n, ν, k) = −k
2V

4π
− k2V

4π
βpqνqnp, f ∼ k2a3. (7.38)

The scattering is anisotropic in this case (i.e., in the case h = 0, i.e., in the

case of acoustically hard obstacle).

4. Let us derive the following formula for the scattering amplitude in

the case h = 0 for an arbitrary initial field u0:

f(n, k) =
ikV

4π
βpq

∂u0
∂xq

np +
VΔu0
4π

. (7.39)

The initial field satisfies the equation (Δ+k2)u0 = 0, so Δu0 = −k2u0 and

one has gradu0 = O(k) for k → 0. The main assumption is the smallness

of the scatterer. We want to derive formula (7.39) for two reasons. First,

the initial field u0 is not assumed to be a plane wave. Second, we want

to isolate the dependence of the scattering amplitude on the size of the

body from its dependence on the wave number k. When the initial field

is u0 = exp{ik(ν, x)} and the scatterer is placed at the origin, then the

small parameter is ka, so that k → 0 is equivalent to x → 0. But if we

consider the many-body problem then the phase difference should be taken

into account. For example, if k is small but x is large then ik(ν, x) is not

necessarily small, and such a situation occurs in the many-body problem if

the distance between some of the bodies is larger than the wavelength.
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As in Section 7.3 we consider the problem (7.1)–(7.3) with h = 0 and

look for the solution of the form (7.4). The integral equation for σ takes

the form (7.7) with h = 0. If a is very small we can rewrite this equation

as

σ = Aσ + 2
∂u0
∂N

, (7.40)

where A is defined in (7.20) and the error is O(a).

Let us rewrite formula (7.6) as

f(n, k) = (4π)−1

∫
Γ

σ(s)ds − ik(4π)−1

∫
Γ

(n, s)σ(s)ds, (7.41)

where the terms of the order O(k2a2) are omitted because ka � 1. We

expand the initial field u0 in the Taylor series with respect to x, assuming

that the origin is placed inside the scatterer. This yields

u0(x, k) = u00 + (ν, x) +
1

2
(Bx, x) +O

(
a3
)
, (7.42)

where u00 = u0(0, k),

ν = �u0(x, k)|x=0, (B)mj = bmj =
∂2u0(x, k)

∂xm∂xj

∣∣∣∣
x=0

(7.43)

Therefore

∂u0
∂N

= (ν,N) + (Bs,N), (7.44)

where s ∈ Γ. Integrating (7.40) over Γ and taking into account (7.21), one

obtains ∫
Γ

σ ds =

∫
Γ

(Bs,N)ds = V trB = VΔu0|x=0, (7.45)

where tr is the trace and the formula
∫
Γ
(ν,N)ds = 0 was used. Further-

more, one obtains

−ik(4π)−1nq

∫
Γ

sqσ(s)ds = −ik(4π)−1npνqβpqV, (7.46)

where σ = Aσ + 2νpNp, one sums up over the repeated indices,∫
Γ sqσ(s)ds = −V νpβpq, βpq = βqp is the magnetic polarizability tensor

defined in Chapter 5 as

V βpq =

∫
Γ

sqσp(s)ds, (7.47)
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where σp is the solution of the equation

σp = Aσp − 2Np. (7.48)

Formula (7.39) follows from (7.45), (7.46), and (7.43). In calculating the

integral in (7.46) one can neglect the term (Bs,N) in the right-hand side

of (7.44) because this term is of order O(a), while (ν,N) = O(1).

7.3 Scalar Wave Scattering: The Many-Body Problem

1. Consider scattering by r bodies. Let

D =

r⊔
j=1

Dj, Γ =

r⊔
j=1

Γj , Dj ∩Di = ∅, i 
= j, Ω = R3 \D,

(7.49)

where ∅ denotes the empty set, R3 \D denotes the complement of D in R3,

and Γj is the boundary of Dj . Let

h|Γj = hj = h1j + ih2j , h1j ≥ 0, h2j ≤ 0, |hj | > 0, (7.50)

a = max
1≤j≤r

aj , (7.51)

d = min
i,j

dij , i 
= j (7.52)

� = max
i,j

dij ,

∫
Γ

≡
r∑
j=1

∫
Γj

, (7.53)

where dij is the distance between Di and Dj

Consider the problem (7.1)–(7.3), which looks formally identical in the

cases r = 1 and r > 1. As in Section 7.2 we look for a solution of the form

(7.4) and define the scattering amplitude by formula (7.5). The scattering

amplitude can be written as in (7.6), σ = (σ1, . . . , σr) but an important

difference between cases r = 1 and r > 1 is that if r = 1 then |s| ∼ a in

(7.6), while if r > 1 the magnitude |s| can be large.
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Let us denote by sj some point inside Dj and rewrite (7.6) for the case

r > 1 as

f(n, k) = (4π)−1
r∑
j=i

∫
Γj

exp
{
− ik

(
n, s− sj

)}
σj(s)ds exp

{
− ik

(
n, sj

)}
.

(7.54)

In (7.54) the magnitudes |s− sj | ∼ a if s ∈ Γj and |s− sj | ∼ dij if s ∈ Γi,

i 
= j. The integral equations for σj , 1 ≤ j ≤ r, can be obtained by

substituting (7.4) into the boundary condition (7.2). This yields

σj = Aj(k)σj − hjTj(k)σj +

′∑
Ajp(k)σp − hj

′∑
Tjp(k)σp

+ 2
∂u0
∂N

− 2hju0, 1 ≤ j ≤ r,

′∑
:=

r∑
p=1,p�=j

,
(7.55)

where

Ajpσp =

∫
Γp

∂

∂Nsj

exp(ikrsjtp)

2πrsjtp
σp
(
tp
)
dtp, (7.56)

Tjpσp =

∫
Γp

exp(ikrsjtp)

2πrsj tp
σp
(
tp
)
dtp. (7.57)

Suppose that

d� a. (7.58)

If one neglects the terms Ajp and Tjp for j 
= p in (7.55) then for σj one

obtains the same equations as for a single body in Section 7.2. Therefore

for hj 
= 0 the scattering amplitude can be calculated from the formula

f(n, k) = − 1

4π

r∑
j=1

exp
{
− ik

(
n, sj

)} hjSj

1 + hjSjC
−1
j

u0j, (7.59)

where Cj is the capacitance of the jth body, Sj is the area of its surface,

u0j = u0(sj , k) (see formula (7.29)). If we assume that every small body

is affected by the self-consistent field u in the medium consisting of many

small bodies, then (7.59) takes the form

f(n, k) = − 1

4π

∫
exp

{− ik(n, y)
}
q(y)u(y, k)dy, (7.60)
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where q(y) is the “effective potential” which is defined as

q(y) = N(y)
hS

1 + hSC−1
. (7.61)

Here N(y) is the number of the small bodies (particles) per unit volume

and hS(1 + hSC−1) is the average value of hjSj(1 + hjSjC
−1
j )−1 in a

neighborhood of the point y. The integral in (7.60) is taken over the domain

where N(y) 
= 0. The self-consistent field u satisfies the equation

u(x, k) = u0(x, k) −
∫

exp(ik|x− s|)
4π|x− s| q(y)u(y, k)dy, (7.62)

which is obtained by taking the limit r → ∞ in the formula

u(x, k) = u0(x, k)−
r∑
j=1

exp(ik|x− sj |)
4π|x− sj|

hjSj
1 + hSC−1

u
(
sj , k

)
. (7.63)

Equation (7.62) can be written as the Schrödinger equation
[
�2 + k2 − q(x)

]
u(x, k) = 0, (7.64)

u− u0 ∼ exp(ik|x|)
4π|x| f(n, k) as |x| −→ ∞. (7.65)

2. If the number r of the small scatterers is not very large (r ∼ 10) then

the scattering amplitude and the scattered field can be found from a linear

system of algebraic equations. The matrix of the system has dominant main

diagonal so that the system is easily solvable by iterations. In order to prove

this statement let us look for the solution of the problem (7.1)–(7.3) (with

Γ =
⊔r
j=1 Γj) of the form

v =

r∑
j=1

∫
Γj

exp(ik|x− s|)
4π|x− s| σj(s)ds. (7.66)

In general, in order to find v one derives a system of integral equations for

finding σj , 1 ≤ j ≤ r. In our case, when ka � 1, the scattering amplitude

depends just on finitely many numbers Qj :

f(n, k) =
1

4π

r∑
j=1

∫
Γj

exp
{− ik(n, s)

}
σj(s)ds

=
1

4π

r∑
j=1

exp
{
− ik

(
n, sj

)}
Qj +O(ka),

(7.67)
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where

Qj =

∫
Γj

σj(t)dt, (7.68)

and we assume that Qj 
= 0, 1 ≤ j ≤ r This is the case when hj 
=
0. Consider, for example, the Dirichlet boundary condition (hj = ∞)

(acoustically soft particles). Then from (7.66) and (7.2) it follows that

∫
Γm

exp(ik|xm − s|)
4π|xm − s| σm(s)ds

+
r∑

m �=j,j=1

∫
Γj

exp(ik|xm − s|)
4π|xm − s| σjds = −u0

(
xm, k

)
, 1 ≤ m ≤ r.

(7.69)

If ka� 1, then this system can be written with the accuracy O(ka) as

∫
Γm

σmds

4π|xm − s| = −u0
(
xm, k

)−
r∑

m �=j,j=1

exp(ik|xm − sj|)
4π|xm − sj | Qj, 1 ≤ m ≤ r.

(7.70)

Equation (7.70) can be considered as an equation for the electrostatic charge

distribution σm on the surface Γm of the perfect conductor charged to the

potential given by the right-hand side of (7.70). Therefore the total charge

on Γm is

Qm =

∫
Γm

σmds = Cm

⎧⎨
⎩−u0

(
xm, k

)−
r∑

m �=j,j=1

exp(ik|xm − sj |)
4π|xm − sj | Qj

⎫⎬
⎭ ,

where Cm is the electrical capacitance of the perfect conductor with bound-

ary Γm. The above system of equations forQ = (Q1, . . . , Qr) can be written

as

AQ = b, (7.71)

where

A =
(
amj

)
, amj := δmj + Cm

exp(ik|xm − sj |)
4π|xm − sj | ,

bm = −Cmu0
(
xm, k

)
, δmj =

{
1, m = j,

0, m 
= j.

(7.72)
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If the particles are not too prolate then Cm ∼ a. The matrix A will have

dominant main diagonal if

(4π)−1ra d−1 < 1, (7.73)

where d is defined in (7.52). If condition (7.73) holds then the system (7.71)

can be solved by iterations and the scattering amplitude can be found from

formula (7.67). The scattered field v can be found from the formula

v =

r∑
j=1

exp(ik|x− sj |)
4π|x− sj | Qj (7.74)

with the accuracy O(ka). If h 
= 0 then the scattering amplitude can be

calculated from (7.67) and (7.68), and the linear algebraic system for Qm
can be obtained from (7.55). To this end let us integrate (7.55) over Γj ,

yielding

Qj = −Qj − hjJj
2πSj

Qj +
∑
p�=j

djpQp − 2hjSju0
(
sj
)
. (7.75)

Here we have used arguments similar to those given in Section 7.2, subsec-

tion 2, and the following notations:

Jj =

∫
Γj

∫
Γj

ds dt

rst
, djp =

∫
Γj

ds

{
∂

∂Ns

exp(ikrstp)

2πrstp
− hj

exp(ikrstp)

2πrstp

}
.

Equation (7.75) can be written as

ÃQ = b̃, (7.76)

(
Ãjp

)
= ãjp = δjp

(
1 +

hjJj
4πSj

)
− d̃jp, d̃jp =

djp
2
, b̃j = −hjSju0

(
sj
)
.

(7.77)

The linear system (7.76) can be solved by iterations if

1 +
hjJj
4πSj

>

r∑
p�=j,p=1

∣∣d̃jp∣∣, 1 ≤ j ≤ r. (7.78)

If hj = 0, 1 ≤ j ≤ r, then Qj = 0 and formula (7.67) for the scattering

amplitude becomes more complicated. This was shown in Section 7.2. If

we consider each of the small bodies as being affected by the self-consistent
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field u, then from (7.67) and (7.39) it follows that

f(n, k) = (4π)−1
r∑
j=1

exp
{
− ik

(
n, sj

)}{
ikVjβ

(j)
pq

∂u

∂xq
np+V � u

}
, (7.79)

where Vj is the volume of the jth body and β
(j)
pq is its magnetic polarizability

tensor. The same argument leads to the following formula for the self-

consistent field in the medium:

u = u0+

r∑
j=1

exp(ik|x− sj |)
4π|x− sj |

{
ikVjβ

(j)
pq

∂u(sj , k)

∂yq
np+VjΔu

(
sj , k

)}
, (7.80)

where sj is the radius vector of the jth body.

If one passes to the limit as r → ∞ in (7.71) then the integro-differential

equation for the field u takes the form

u(x, k) = u0(x, k) +

∫
exp(ik|x− y|)

4π|x− y|
(
ikBpq(y)

∂u

∂yq

xp − yp
|x− y| + b(y)Δu

)
dy,

(7.81)

where one must sum over the repeating indices, the integral is taken over

the domain where b(y) 
= 0, b(y) is the average volume of the bodies near

the point y, and Bpq(y) is the average magnetic polarizability tensor. That

is, if Kh(y) is the ball of radius h centered at y, then

b(y) = lim
h→0

∑
Vj

|Kh(y)| , Bpq(y) = lim
h→0

∑
Vjβ

(j)
pq

|Kh(y)| , (7.82)

where |Kh(y)| is the volume of Kh(y) and
∑

denotes the sum over the

bodies which are located in the ball Kh(y). The vector (xp − yp)/|x− y| in
formula (7.81) replaces np in formula (7.80).

7.4 Electromagnetic Wave Scattering

1. Let us consider the scattering by a single homogeneous body D with

characteristic dimension a. Let ε, μ, σ be its dielectric permeability, mag-

netic permeability, and conductivity, ε0, μ0, σ0 = 0 be the corresponding

parameters of the exterior medium, ε′ = ε+ iσω−1, ω be the frequency of

the initial field, λ0 be its wavelength and k0 = 2πλ−1
0 . Let λ = λ0(|ε′μ|)−1/2

be the wavelength in the body, and δ = ( 2
ωγδ )

1/2 be the depth of the skin

layer, where we assume that ε << σ. We consider wave scattering under
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the following assumptions, which will be discussed separately:

|ε′| � 1, δ � a, k0a� 1, (7.83)

|ε′| � 1, δ � a, k0a� 1, (7.84)

∣∣∣(ε′ − ε0
)
ε−1
0

∣∣∣+
∣∣∣(μ− μ0

)
μ−1
0

∣∣∣ � 1. (7.85)

Assumption (7.83) corresponds to a small dielectric body. Assumption

(7.84) corresponds to a small well-conducting body. Assumption (7.85)

corresponds to the case when the body does not differ much from the exte-

rior medium. This assumption does not require the body to be small. Our

aim is to derive explicit analytical approximate formulas for the scattering

amplitude and for the scattering matrix.

2. The basic equations are

curlE = iωμH, curlH = −iωε′E in D, (7.86)

curlE = iωμ0H, curlH = −iωε0E + j0 in D′, (7.87)

where D′ is the exterior domain with respect to D. The boundary condi-

tions are

N × E and μH ·N are continuous when crossing Γ, (7.88)

where Γ is the boundary of D and N is the outward pointing unit normal

at the boundary.

If σ = ∞ then

N × E = 0 on Γ, (7.88’)

This case can occur only under assumption (7.84). In (7.87) j0 is the initial

current source. Let

A0 =

∫
G(x, y)j0dy, G =

exp(ik0|x− y|)
4π|x− y| , k20 = ω2ε0μ0,

∫
=

∫
R3

(7.89)

and

E0 =
1

−iωε0
(
curl curlA0 − j0

)
, H0 = curlA0, (7.90)

The total field can be found from the formulas

E = E0 + E1, H = H0 +H1 (7.91)
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where

E1 =
1

−iωε0 curl curlA− curlF,

H1 =
1

−iωμ0
curl curlF + curlA,

(7.92)

and

A =

∫
Γ

G(x, s)N ×H1ds, F = −
∫
Γ

G(x, s)N × E1ds. (7.93)

Remark 7.1 Let us assume (7.84). If one tries to calculate the scattering

using the approximations N×E1 = −N×E0 on Γ and N×H1 = 0 on Γ, this

leads to wrong results (for example one can take the spherical scatterer D

and use the known explicit solution to check the above statement). Therefore

the above approximations, which are used in geometrical optics, are not valid

for our low-frequency problem.

3. Let n = x|x|−1, |x| = r and

f = fE(n, k) = lim
|x|→∞,x|x|−1=n

|x| exp (− ik|x|)E1. (7.94)

Let us prove, assuming (7.84), that

f =
k20

4πε0

[
n, [P, n]

]
+
k20
4π

(
μ0

ε0

)1/2

[M,n], (7.95)

where P and M are the electric and magnetic dipole moments induced on

the body by the initial field and [A,B] = A×B is the vector product. Let

us consider the vector potential in the far-field region and keep the first two

terms of its expansion in powers of ka:

A =

∫
D

j(y)G(x, y)dy

=
exp(ik0|x|)

4π|x|
∫
D

dyj(y) exp
{− ik0(n, y)

}

=
exp(ik0|x|)

4π|x|
{∫

D

j(y)dy − ik0

∫
D

(n, y)j(y)dy + · · ·
}

=
exp(ik0|x|)

4π|x| {−iωP − ik0M × n},

(7.96)
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where

P =

∫
D

yρ(y)dy, M =
1

2

∫
D

[y, j]dy, (7.97)

and ρ = (iω)−1 div j. Indeed, using the condition (j,N) = 0 on Γ, one gets:

−iωP = −iω
∫
D

yρ(y)dy = −
∫
D

y div j dy

= −
∫
Γ

(j,N)y ds+

∫
D

j dy =

∫
D

j dy.

(7.98)

Furthermore,

∫
D

(n, y)j dy =
1

2

∫
D

(
[y, j]× n+ j(n, y) + y(n, j)

)
dy =M × n, (7.99)

where we have used the relations:∫
D

(
j(n, y) + y(n, j)

)
dy +

∫
D

y(n, y) div j dy =

∫
Γ

y(j,N)(y, n)ds = 0,

(7.100)

and ∫
D

y(n, y) div j dy = iω

∫
D

y(n, y)ρ dy ≈ 0.

In the far-field region, j = 0 and E1 = (−iωε0)−1 curl curlA. Therefore

from (7.96) and (7.94) it follows that

f = −(4πiωε0)−1
ik0n×

[
ik0n× {− iωP − ik0M × n

}]

=
k20

4πε0
n× [P, n] +

k20
4π

(
μ0

ε0

)1/2

M × n.

(7.101)

If the domain D shrinks to a surface S, then (7.101) still holds with

P =

∫
S

sσ(s)ds, M =
1

2

∫
S

s× j ds. (7.102)

Algorithms and formulas for calculating P and M are given in Chapter 5.

Under the assumption (7.83) the magnetic dipole radiation can be ne-

glected if μ = μ0 because the eddy currents are negligible if δ � a. Under

the assumption (7.84) the magnetic dipole radiation is of the order of the

electric dipole radiation even in the case μ = μ0.
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In general, the magnetic polarizability vector can be calculated from the

formula

Mi = β̃ijV μ0Hj , (7.103)

where

β̃ij = αij(−1) + αij
(
γμ
)
, γμ =

μ− μ0

μ+ μ0
(7.104)

and αij(γ) is defined in Section 5.1. We denote

αij(−1) := βij . (7.105)

If μ = μ0 then αij(γμ) = 0.

Remark 7.2 Suppose that D is a metallic body. In this case the current

can be calculated by the formula: j = N ×H, where H is the magnetic field

on the surface of the body. Let H1 denote the magnetic field on the surface

Γ of the ideal magnetic insulator D, i.e., a body with μ = 0. This field is

the value on Γ of the solution of the problem

curlH = 0, divH = 0 in D′, N ·H = 0 on Γ, H(∞) = H0, (7.106)

where H0 is a given constant field. In the quasistatic problem H0 is the ini-

tial field at the point where the small body is placed. If δ � a then neither

magnetic nor electric field can penetrate into the body and therefore the

body behaves like a perfect magnetic insulator in the initial homogeneous

magnetic field H0. Under the assumption (7.83) a good approximation for

N × H is N × H1. This approximation leads to the correct value of M .

On the other hand, this approximation leads to a wrong value of P . Let us

show this in the case when D is a ball of radius a. The magnetic field H1

in this case is known explicitly:

H1 = H0 − a3

2|x|3
{
3
x(x,H0)

|x|2 −H0

}
. (7.107)

If Γ is a sphere of radius a and s is a point on Γ, then N ×s = 0. Therefore

N ×H1 =
3

2
[N,H0], (7.108)

and

−iωP =

∫
Γ

j dy =

∫
Γ

N ×H1dy =
3

2

∫
Γ

[
N,H0

]
ds = 0,



Electromagnetic Wave Scattering 109

which is wrong. Thus one can calculate M using the approximation

j = N ×H1 (7.109)

if the body is metallic, but this approximation cannot be used for, calcu-

lating P .

4. Let us calculate f under the assumption (7.85). Equations (7.86)

and (7.87) can be written as

curlE = iωμ0H + iω
(
μ− μ0

)
ηH, (7.110)

curlH = −iωε0E + j0 − iω
(
ε′ − ε0

)
ηE (7.111)

where

η =

{
1, x ∈ D,

0, x /∈ D.
(7.112)

Let us set

je = −iω(ε′ − ε0
)
ηE, jm = −iω(μ− μ0

)
ηH, (7.113)

A =

∫
G(x, y)jedy, F =

∫
G(x, y)jmdy,

∫
:=

∫
D

. (7.114)

Then the vectors E1, H1 defined in formula (7.91) can be found from the

formulas

E1 = −(iωε0)−1(
curl curlA− je

)− curlF, (7.115)

H1 = −(iωμ0

)−1(
curl curlF − jm

)
+ curlA. (7.116)

From (7.113)–(7.116) and (7.91) one gets

E(x) = E0(x) +
ε′ − ε0
ε0

curl curl

∫
G(x, y)E dy

− ε′ − ε0
ε0

ηE + iω
(
μ− μ0

)
curl

∫
G(x, y)H dy,

(7.117)

H = H0(x) +
μ− μ0

μ0
curl curl

∫
D

G(x, y)H dy

− μ− μ0

μ0
ηH − iω

(
ε′ − ε0

)
curl

∫
G(x, y)E dy.

(7.118)
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The system (7.117)-(7.118) can be solved by iterations if

(∣∣∣∣μ− μ0

μ0

∣∣∣∣+
∣∣∣∣ε

′ − ε0
ε0

∣∣∣∣
) (

1 + k20a
2
) � 1, (7.119)

where a is the characteristic dimension of the domain D, say, half of its

diameter. Indeed, under the assumption (7.119) the norm in L2(D) of

the operator of system (7.117)-(7.118) is less than 1. Let us verify this

statement. We have ∥∥∥∥ε
′ − ε0
ε0

ηE

∥∥∥∥ ≤
∣∣∣∣ε

′ − ε0
ε0

∣∣∣∣ ‖E‖. (7.120)

Here and below ‖ · ‖ denotes the L2(D) norm and c denotes various con-

stants. Furthermore,∥∥∥∥ curl
∫
G(x, y)E dy

∥∥∥∥ ≤ c
(
1 + k0a

)‖E‖, (7.121)

∥∥∥∥ curl curl
∫
G(x, y)E dy

∥∥∥∥ ≤ c
(
1 + k20a

2
)‖E‖. (7.122)

Inequalities (7.121) and (7.122) can be proved as follows. Note that

4πG(x, y) =
1

|x− y| + ik0 − k20 |x− y|
2

+O
(
k30 |x− y|2), (7.123)

if k0|x− y| � 1. Hence

4πD2G = D2 1

|x− y| +O

(
k20

|x− y|
)
. (7.124)

We have

∥∥∥∥
∫

E dy

x− y

∥∥∥∥ ≤ ‖E‖
(∫ ∫

dx dy

|x− y|2
)1/2

= ‖E‖O(a2) , (7.125)

∥∥∥∥Dx

∫
E dy

x− y

∥∥∥∥ ≤ ‖E‖O(a),
and ∥∥∥∥

∫
E dy

|x− y|
∥∥∥∥
W 2

2 (D)

≤ c‖E‖, (7.126)
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where W �,p(D) = W �
p (D) are the Sobolev spaces ([29]). Inequality (7.126)

is known in the theory of elliptic boundary-value problems (see, e.g., [44]).

From the above estimates it follows that the norm of the oprator in (7.117)-

(7.118) is less than one.

Let Af :=
∫
D
f(y)|x − y|−ady, D ∈ R

n. The operator A : Lp(D) →
Lq(D) is bounded provided that a = n(1 − m), 0 < m ≤ 1, 0 ≤ δ ≤
p−1 − q−1 < m. Moreover, ||A||Lp(D)→Lq(D) ≤ c|D|m−δ, where |D| is the

measure (volume) of D, c = c(m, δ, n) = const > 0. (see, e.g.,[29]).

Inequality (7.119) holds even if the body is large (k0a � 1) provided

that the quantity

∣∣∣∣ε
′ − ε0
ε0

∣∣∣∣+
∣∣∣∣μ− μ0

μ0

∣∣∣∣
is sufficiently small.

Let us set

g(n) =

∫
exp

{− ik0(n, y)
}
dy, (7.127)

iterate once system (7.117)-(7.118) and calculate the scattering amplitude.

This yields

f =− ε′ − ε

4πε
k20n×

[
n×

∫
exp

(− ik0n · y)E0(y)dy

]

− k0ω(μ− μ0)

4π
n×

∫
exp

(− ik0n · y)H0dy.

(7.128)

If E0 and H0 are the values of the electromagnetic field at the point where

the small body D is situated, then an approximate formula for f can be

written as

f =

(
− ε′ − ε

4πε
k20 n×

[
n× E0

]
− k0ω(μ− μ0)

4π
n×H0

)
g(n).

If D is a ball of radius a, then

g(n) = 4πa3
sin (k0a)− k0a cos k0a

(k0a)3
. (7.129)

If D is a cylinder with radius a and length 2L, then

g(n) = 2L
sin(k0L cos θ)

k0L cos θ

J1(k0a sin θ)

k0a sin θ
, (7.130)
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where θ is the angle between the axis of the cylinder and the unit vector n,

and J1(x) is the Bessel function.

5. Many-body electromagnetic wave scattering can be developed along

the lines of Section 7.3.

6. Let us derive the following formula for the scattering matrix for the

electromagnetic wave scattering by a single body under the assumption

(7.84):

S =
k2V

4π

(
μ0β11 + α22 cos θ − α32 sin θ α21 cos θ − α31 sin θ − μ0β12

α12 − μ0β21 cos θ + μ0β31 sin θ α11 + μ0β22 cos θ − μ0β32 sin θ

)
,

(7.131)

where θ is the angle of scattering and βij and αij are the polarizability

tensors defined in Chapter 5. In Chapter 5 approximate analytical formulas

for calculating these tensors are given.

If assumption (7.83) holds then one can neglect terms involving βij in

(7.131). Let us prove (7.131). Let the origin be inside D, the initial field be

a plane wave propagating in the positive direction e3 of the z-axis, n be a

unit vector, and θ be the angle between e3 and n (the angle of scattering).

Let E1, E2 be the projections of the initial electric field onto the axes OX

and OY , and f1, f2 be the projections of the scattered electric field onto

the axes OX1, OY 1. The axis OZ1 is assumed to be in the direction of n.

The plane (OZ,OY ) coincides with the plane (OZ1, OY 1) and is called the

plane of scattering.

The scattering matrix is defined by the formula fE = SE:

(
f2
f1

)
=

(
S2 S3

S4 S1

) (
E2

E1

)
(7.132)

Formula(7.131) gives this matrix explicitly. All the elements of the smatrix

are calculated by the same method. Let us derive in detail the formula for

S2. Let ej(e
′
j) be the unit vectors of the above coordinate systems. Then

(e′2, e1) = 0, (e′2, e2) = cos θ, (e′2, n) = − sin θ, f2 = S2E2 + S3E1. On the

other hand,

f2 =
(
f, e′2

)
=

k2

4πε0

([
n, [P, n]

]
, e′2

)
+
k2

4π

(
μ0

ε0

)1/2(
[M,n], e′2

)
.
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We have([
n[P, n]

]
, e′2

)
=
(
P − n(P, n), e′2

)
=
(
P, e′2

)
= ε0V αijEj

(
ei, e

′
2

)

= ε0V
{(
α21E1 + α22E2

)
cos θ − (

α31E1 + α32E2

)
sin θ

}
,

(7.133)

(
[M,n], e′2

)
=
(
[n, e′2],M

)
= −(e1,M)

= −μ0V
(
βH, e1

)

= −μ0V
(
β11H1 + β12H2

)
= −μ0V

(
ε0
μ0

)1/2(− β11E2 + β12E1

)
,

(7.134)

where the formulas

H1 = −
(
ε0
μ0

)1/2

E2, H2 =

(
ε0
μ0

)1/2

E1 (7.135)

were used. From (7.133) and (7.134) we find

S2 =
k2V

4π

(
α22 cos θ − α32 sin θ + μ0β11

)
(7.136)

as the coefficient of E2. Formulas for the other elements of the S-matrix

can be obtained similarly.

Knowing the S-matrix for a single small body, one can find the re-

fraction index tensor nij = δij + 2πNk−2Sij(0) of the rarefied medium

consisting of many small particles, the coefficient of absorption κ =

Nσ = 4πNk−1ImS(0) and the crosssection σ = 2πk−1trImS(0) for the

anisotropic scattering. Here N is the number of the particles per unit vol-

ume, tr denotes the trace of a matrix, and Im denotes the imaginary part

of a complex number.

7.5 Radiation from Small Apertures and the Skin Effect

for Thin Wires

1. Let F be an aperture in an infinite conducting plane, α0 be its coefficient

of electrical polarizability, β0
ij , 1 ≤ i, j ≤ r, be its tensor of magnetic

polarizability, the x3-axis be perpendicular to the plane and ej, 1 ≤ j ≤ 3,

be the coordinate unit vectors. We assume that the electric field in the

halfspace x3 < 0 is E′
0e3 and in the halfspace x3 > 0 the electrostatic
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potential φ ∼ (P, x)/(4πε0|x|3), E = −�φ. The electric dipole moment P

can be calculated from the formula.

P = α0ε0E
′
0e3. (7.137)

The magnetic field in the half-space x3 < 0 is H ′
0 = H ′

01e1 + H ′
02e2

and its asymptotic behavior in the half-space x3 > 0 is given by ψ ∼
(M,x)/(4πμ0|x|3), where ψ is the magnetostatic potential,M is is the mag-

netic dipole moment, H = −�ψ for x3 > 0, and

Mi = β0
ijμ0H

′
0j . (7.138)

Let β̃ and α̃ij denote the magnetic polarizability coefficient and the elec-

tric polarizability tensor of the thin magnetic film and the thin metallic

screen with the shape of F . The following theorem is a duality principle in

electrostatics.

Theorem 7.1 The following formulas hold

α0 = −β̃/2, β0
ij = −α̃ij/2. (7.139)

Remark 7.3 Formulas for calculating the values of β̃ and α̃ij are given

in Chapter 5. If one knows these values, one can find α0 and β0
ij from

(7.139) and P and M from (7.137) and (7.138). Knowing P and M , one

can calculate the radiation from the aperture F from (4.13).

Proof. [Proof of Theorem 7.1] Let us formulate two principles:

(A) Let there be an initial electrostatic field Ẽ
(2)
0 = E0e3 in the half-space

x3 < 0 bounded by the conducting plane x3 = 0. If we cut an aperture

F in the plane x3 = 0 then the field E(2) in the half-space x3 > 0 can

be calculated from the formula E(2) = H(1) −H
(1)
0 , where H(1) is the

magnetic field which is present when a magnetic plate F with μ = 0 is

placed in the initial field H
(1)
0 = − 1

2 Ẽ
(2)
0 = − 1

2E0e3.

(B) Let there be a magnetostatic field H
(2)
0 parallel to the plane x3 = 0

in the half-space x3 < 0 bounded by the plane x3 = 0 with μ = 0. If

we cut an aperture F in the plane then the field H(2) in the half-space

x3 > 0 can be calculated from the formula H(2) = −(E(1) − E
(1)
0 ),

where E(1) is the electric field which is present when the metallic plate

F is placed in the initial field E
(1)
0 = 1

2H
(2)
0 .
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Formula (7.139) follows immediately from these principles and from the

definition of α0, β̃, β̃
0
ij , α̃ij . Both principles can be proved similarly. We

give the proof of principle (A).

Let S = R2 \ F . We have E(2) = −�u, where

u =

{
φ, x3 > 0,

−E0x3 + φ, x3 < 0,

� φ = 0 outside S, φ|S = 0, φ(∞) = 0, and u, ∂u/∂x3 are continuous when

crossing F , i.e., (∂φ/∂x3)+ = −E0 + (∂φ/∂x3)−. By symmetry we have

φ(x̂, x3) = φ(x̂,−x3), x̂ := (x1, x2). Hence (∂φ/∂x3)− = −(∂φ/∂x3)+,

(∂φ/∂x3)+ = − 1
2E0. Here (∂φ/∂x3) are the limiting values of ∂φ/∂x3 on

F for x3 → ±0. So Δφ = 0 for x3 > 0, φ|S = 0, φ(∞) = 0, (∂φ/∂x3)+ =

− 1
2E0, and E(2) = −�φ for x3 > 0. The field H(1) − H

(1)
0 = −�ψ for

x3 > 0, where � ψ = 0, ψ(∞) = 0, and by symmetry ψ(x̂, −x3) = −ψ(x̂,
x3). The magnetostatic potential v = 1

2E0x0 + ψ satisfies the condition

(∂v/∂x3)|F = 0, where N is the outward pointing normal to F . Hence

(∂ψ/∂x3)+ = − 1
2E0. As ψ is odd with respect to x3, we conclude that

ψ|x3=0 = 0, ψ|S = 0. Hence φ, ψ are the solutions of the same boundary

value problem in the half-space x3 > 0. The solution of this problem is

unique. Hence φ ≡ ψ for x3 > 0 . This means that E(2) = H(1) −H
(1)
0 for

x3 > 0. Principle (A) is proved. �

Example 7.1 For disk with radius a we have β̃ = −(8/3)a3, α̃ =

(16/3)a3δij , 1 ≤ i, j ≤ 2, α0 = (4/3)a3, β0
ij = −(8/3)a3δij , 1 ≤ i, j ≤ 2, in

SI units.

2. In Chapter 5 some two-sided variational estimates of β̃ and α̃ij were

given. In the special case in which F is a plane aperture one can give

another variational estimate of β̃. Actually we will derive the estimate for

α0 = −β̃/2.
Let S = R2 \ F , be the complement of F in the plane, and let

g(s) =

∫
F

r−1
st dt, α = (2π)−1

∫
F

∫
F

r−1
st ds dt. (7.140)

Then the following variational principle holds:

α− α0 = max
(
∫
S g(t)u(t)dt)

2

2π
∫
S

∫
S
u(s)u(t)
rst

ds dt
, (7.141)
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where the admissible functions should satisfy the edge condition (7.17) and

ensure convergence of the integrals in (7.141). Principle (7.141) allows one

to obtain some upper bounds for α0.

Let us derive (7.141). Let E′
0 = E0e3 be the electric field in the half

space x3 < 0 and the aperture F is cut in the conducting plane x3 = 0.

Then the potential φ in the half space x3 > 0 can be written as

φ(x) = 2

∫
F

φ(t)
∂G0

∂x3
dt, x3 > 0, (7.142)

where

G0(x, y) =
(
4πrxy

)−1
, (7.143)

and

φ(x) = −2

∫
F

φ(t)
∂G

∂x3
dt− E0x3, x3 < 0. (7.144)

The potential φ(x) and its derivatives are continuous when crossing the

aperture F and

φ|S = 0. (7.145)

Let |x| → ∞, x3 > 0. Then

φ(x) ∼ 2ε0
∫
F φ(t)dt x3

4πε0|x|3 =
(P, x)

4πε|x|3 , (7.146)

where

P = α0ε0E0e3, (7.147)

and

α0 =
2

E0

∫
F

φ(t)dt. (7.148)

Let σ denote the charge density on S.

σ = −ε0 ∂φ
∂x3

∣∣∣∣
x3=+0

. (7.149)

Green’s formula implies

φ(x) =

∫
x3=0

(
φ(t)

∂G0(x, t)

∂x3
−G0(x, t)

∂φ

∂x3

)
dt. (7.150)
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From (7.145), (7.149), and (7.150) it follows that

φ(x) =

∫
F

∂G0

∂x3
dt+

1

ε0

∫
S

G0(x, t)σ dt−
∫
F

G0(x, t)
∂φ

∂x3
dt. (7.151)

Let us show that

∂φ

∂x3

∣∣∣∣
F

= −E0

2
. (7.152)

This follows from (7.142), (7.144), and the condition
(
∂φ

∂x3

)∣∣∣∣
x3=+0

=

(
∂φ

∂x3

)∣∣∣∣
x3=−0

on F. (7.153)

Let us take x ∈ S in (7.151) and take into account (7.152). This yields

∫
S

σ(t)dt

rst
= −ε0E0

2
g(s), s ∈ S, (7.154)

where g(s) is defined in (7.140). Let x→ s ∈ F , x3 > 0 in (7.151). Then

φ(s) =
φ(s)

2
+

1

ε0

∫
S

G0(s, t)σ dt+
E0

8π
g(s), (7.155)

which is equivalent to the equation

φ(s) =
1

2πε0

∫
S

σ(t)dt

rst
+
E0

4π
g(s), (7.156)

From (7.156) and (7.148) it follows that

α0 =
1

πε0E0

∫
S

σ(t)g(t)dt+ α, (7.157)

where α is defined in (7.140). This can be written as

α− α0 = − 1

πε0E0

∫
S

σ(t)g(t)dt. (7.158)

From (7.154), (7.158), and Theorem 3.2 formula (7.141) follows. In the

derivation of (7.141) we used some ideas from [25].

3. Consider the skin effect in thin wires. Let the axis of the wire be

directed along the x3-axis Γ be the boundary of the cross section D of the

wire, D′ be the plane domain extrior to D, a be the diameter of Γ, ka� 1.

One can consider also wires the axes of which are curves with radius of

curvature R � a. We assume that δ � a where δ is the skin depth defined
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in Section 7.4. Let Γ be the length of Γ, J be the total current in the wire,

and

Aj =
1

π

∫
Γ

∂

∂Ns
ln

1

rst
j(t)dt, (7.159)

where Ns is the unit outward pointing normal to Γ at the point s.

Proposition 7.1 Under the above assumptions the current density on

the surface Γ can be found by the iterative process

jn+1 = −Ajn, j0 =
J

L
, j = lim

n→∞ jn(t). (7.160)

Proof. It is sufficient to note that under the above assumptions the prob-

lem about the current distribution on Γ can be formulated as follows, Let

v(x1, x2)e3 be the vector potential of the static magnetic field corresponding

to the current J . Then

∂2v

∂x21
+
∂2v

∂x22
= 0 in D′, v|Γ = const, (7.161)

v ∼ μ0J

2π
ln

1

r
as r =

(
x21 + x22

)1/2 −→ ∞, (7.162)

− 1

μ0

∂v

∂N

∣∣∣
Γ
= j(t), J =

∫
Γ

j(t)dt. (7.163)

If we look for the solution of the problem (7.161)–(7.163) of the form

v(x) =
μ0

2π

∫
Γ

ln
1

rxt
j(t)dt, (7.164)

then from (7.163) it follows that

j = −Aj − j

2

or

j = −Aj. (7.165)

Proposition 7.1 follows now from Theorem 6.2. �
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7.6 An Inverse Problem of Radiation Theory

1. Suppose that we are interested in measuring the electromagnetic field

in the aperture of the mirror antenna. A possible method for making such

measurements is as follows. Let us assume that the wavelength range is

λ ∼ 3 cm and let us place at some point x0 in the aperture of the antenna

a small probe of dimension a, ka � 1, k = 2πλ−1. Let E0, H0 denote the

electromagnetic field at the point x0 and E,H denote the field scattered

by the probe in the far-field zone. Note that for a small probe the far-field

zone, which is defined by the condition ka2r−1 � 1, is, in fact, close to

the probe. For example, if λ = 3cm, a = 0.3 cm, then ka2 = 0.19 cm.

Therefore if r = 2 cm, then ka2r−1 ≈ 0.1 � 1. Let us assume for simplicity

that the probe material is such that the magnetic dipole radiation from the

probe is negligible. In this case the electric field scattered by the probe in

the direction n can be calculated from the formula (7.95) as

E =
k2

4πε0

[
n, [P, n]

]
, (7.166)

where

Pi = αij(γ)ε0V E0j , γ =
ε′ − ε0
ε′ + ε0

. (7.167)

Here V is the volume of the probe, ε0 is its dielectric constant, αij(γ) is

its electric polarizability tensor, k is the wave number of the field in the

aperture, E0 is the electric field at the point x0 where the probe was placed,

n is the unit vector, and one sums up over the repeated indices. Let n1

and n2 be two non-collinear unit vectors, and Ej , j = 1.2, be the scattered

fields corresponding to nj . We will solve the following

Problem 7.1 Find E0, H0 from the measured Ej , j = 1.2.

We assume that the tensor αij(γ) is known. In Chapter 5 some explicit an-

alytical approximate formulas for αij(γ) are given. From (7.166) it follows

that

Ej = b
{
P − nj

(
P, nj

)}
, b =

k2

4πε0
, j = 1, 2. (7.168)

Therefore

bP = E1 + bn1

(
P, n1

)
= E2 + bn2

(
P, n2

)
. (7.169)
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Let us choose for simplicity n1 perpendicular to n2. Then it follows from

(7.169) that

b
(
P, n2

)
=
(
E1, n2

)
, (7.170)

b
(
P, n1

)
=
(
E2, n1

)
. (7.171)

Therefore

P = b−1E1 + b−1n1

(
E2, n1

)
= b−1E2 + b−1n2

(
E1, n2

)
. (7.172)

Thus, one can find vector P from the knowledge of E1 and E2. If P is

known then E0 can be found from the linear system

αij(γ)ε0V E0j = Pi, 1 ≤ i ≤ 3. (7.173)

The matrix of this system is positive definite because the tensor αij
has this property (see Chapter 5. This follows also from the fact that
1
2αijε0V E0jE0i is the energy of the dipole P in the field E0). Therefore

the system (7.173) can be uniquely solved for E0j , 1 ≤ j ≤ 3. We proved

that the above Problem has a unique solution and gave a simple algorithm

for the solution of this problem. The key point in the above argument is

the fact that the matrix αij(γ) is known explicitly (from Chapter 5).

2. In applications the problem of finding the distribution of particles

according to their sizes is often of interest. Suppose that there is a medium

consisting of many particles and the condition (7.85) is satisfied. We assume

that the medium is rarefied, i.e., d � a, where a is the characteristic

dimension of the particles. Let us assume for simplicity that the particles

are spherical. Then the scattering amplitude for a single particle can be

calculated from formulas (7.128) and (7.129). The scattering amplitude is

the function f(n, k, r) of the radius r of the particle. Suppose that φ(r) is

the density of the distribution of the particles according to their sizes, so

that φ(r)dr is the number of the particles per unit volume with the radius

in the interval (r, r + dr). Then the total scattered field in the direction n

can be calculated from the formula

F (n, k) =

∫ ∞

0

φ(r)f(n, k, r)dr. (7.174)

Let us assume that we can measure F (n, k) for a fixed k and all directions

n. Then (7.174) can be considered as an integral equation of the first kind

for an unknown function φ(r).
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3. Suppose that we can measure the electric field scattered by a small

particle (ka� 1) of an unknown shape. The initial field we denote by E0j ,

the scattered field by fj. Let us assume that the magnetic dipole radiation

is negligible. The problem is to find the shape of the small particle.

First let us note that every small particle scatters electromagnetic wave

like some ellipsoid. Indeed, the main term in the scattered field is the dipole

scattering. We have seen above that the knowledge of the scattered field al-

lows one to find the dipole moment P and that equation (7.167) holds. This

equation allows one to find the tensor αij(γ) corresponding to the particle.

This tensor is determined if one knows its diagonal form. Let α1, α2, α3 be

the eigenvalues of the tensor αij(γ). Then an ellipsoid with the semiaxes

proportional to αj scatters as the above body. Therefore one can identify

the shape of the small scatterer by giving the three numbers (α1, α2, α3).

These numbers are the eigenvalues of the tensor αij(γ) which can be calcu-

lated from the known initial field E0j and the measured scattered field fi.

For example, one can take E0j = δij . Then Pi = αij(γ)V ε0. We assume

that the particle is homogeneous and its dielectric constant ε is known, so

that γ in (7.167) is known. For an ellipsoid the polarizability tensor in the

diagonal form is αij = αjδij , where αj = (ε′ − ε0)(ε0 + (ε′ − ε0)n
(j))−1,

where ε′ is the dielectric constant of the ellipsoid and n(j) are the depo-

larization coefficients. These coefficients are calculated explicitly with the

help of the elliptic integrals, and they are tabulated in [58].
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Chapter 8

Fredholm Alternative and a
Characterization of Fredholm

Operators

8.1 Fredholm Alternative and a Characterization of the

Fredholm Operators

Let A be a linear bounded operator in a Hilbert spaceH ,N(A) and R(A) its

null-space and range, and A∗ its adjoint. The operator A is called Fredholm

with index zero iff dimN(A) = dimN(A∗) := n <∞ and R(A) and R(A∗)
are closed subspaces of H . Only the Fredholm operators with index zero

are considered in this Chapter and are called Fredholm operators.

We give a simple and short proof of the following known (cf. [44]) result:

a linear bounded operator A is Fredholm if and only if A = B + F , where

B is an isomorphism and F is a finite-rank operator, that is an operator

F with dimR(F ) < ∞, its rank is dimR(F ). We call a linear bounded

operator B on H an isomorphism if it is a bicontinuous injection of H onto

H , that is, B−1 is defined on all of H and is bounded. Our proof of the

Fredholm alternative consists of a reduction to a finite-dimensional linear

algebraic system which is equivalent to the equation Au = f . For this linear

algebraic system in a finite-dimensional space the Fredholm alternative is

an elementary fact, easily proved and well-known. In Section 8.2 we give a

characterization of unbounded Fredholm operators. This result appears to

be new. In Section 8.3 the Fredholm alternative is established for operator-

functions which depend on a parameter meromorphically, and the Laurent

coefficients of their principal parts are finite-rank operators.

This chapter is based on the papers [88], [81] and [136].

123
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8.1.1 Introduction

We prove the Fredholm alternative and give a characterization of the class of

Fredholm operators by a reduction of the operator equation with a Fredholm

operator to a linear algebraic system in a finite dimensional space.

The Fredholm alternative is a classical result whose proof for linear

equations of the form (I + T )u = f , where T is a compact operator in a

Banach space, can be found in most texts on functional analysis, of which

we mention just [44]. A characterization of the set of Fredholm operators

is given in [44], but it is missing in most texts on functional analysis. The

proofs in [44] follow the classical Riesz argument used in the Riesz-Fredholm

theory. Though beautiful, this theory is not very simple.

Our aim is to give a short and simple proof of the Fredholm alternative

and of a characterization of the class of Fredholm operators. We give the

argument for the case of Hilbert space, but the proof can be easily adjusted

to the case of Banach space.

The idea is to reduce the problem to the one for linear algebraic systems

in finite-dimensional case, for which the Fredholm alternative is a simple

known result: in a finite-dimensional space RN property (8.4) in the Defi-

nition 8.1 of Fredholm operators is a consequence of the closedness of any

finite-dimensional linear subspace, since R(A) is such a subspace in RN ,

while property (8.18) is a consequence of the simple formulas r(A) = r(A∗)
and n(A) = N − r(A), valid for matrices, where r(A) is the rank of A and

n(A) is the dimension of the null-space of A.

If {ej}1≤j≤n, is an orthonormal basis of R(F ), then Fu =∑n
j=1(Fu, ej)ej , so

Fu =

n∑
j=1

(
u, F ∗ej

)
ej , (8.1)

and

F ∗u =

n∑
j=1

(
u, ej

)
F ∗ej , (8.2)

where (u, v) is the inner product in H .

Definition 8.1 An operator A is called Fredholm if and only if

dimN(A) = dimN(A∗) := n <∞, (8.3)
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and

R(A) = R(A), R(A∗) = R(A∗), (8.4)

where the overline stands for the closure.

Recall that

H = R(A)⊕N(A∗), H = R(A∗)⊕N(A), (8.5)

for any linear densely-defined (i.e., having a domain of definition dense in

H) operator A, not necessarily bounded. For a Fredholm operator A one

has:

H = R(A)⊕N(A∗), H = R(A∗)⊕N(A). (8.6)

Consider the equations:

Au = f, (8.7)

Au0 = 0, (8.8)

A∗v = g, (8.9)

A∗v0 = 0. (8.10)

Let us formulate the Fredholm alternative:

Theorem 8.1 If B is an isomorphism and F is a finite-rank operator,

then A = B + F is Fredholm.

For any Fredholm operator A the following (Fredholm) alternative holds:

(1) either (8.8) has only the trivial solution u0 = 0, and then (8.10) has

only the trivial solution, and equations (8.7) and (8.9) are uniquely

solvable for any right-hand sides f and g,

or

(2) (8.8) has exactly n > 0 linearly independent solutions {φj}, 1 ≤ j ≤
n, and then (8.10) has also exactly n linearly independent solutions

{ψj}, 1 ≤ j ≤ n, equations (8.7) and (8.9) are solvable if and only if

(f, ψj) = 0, 1 ≤ j ≤ n, and, respectively, (g, φj) = 0, 1 ≤ j ≤ n. If they

are solvable, their solutions are not unique and their general solutions

are, respectively: u = up +
∑n
j=1 ajφj , and v = vp +

∑n
j=1 bjψj , where

aj and bj are arbitrary constants, and up and vp are some particular

solutions to (8.7) and (8.9), respectively.
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Let us give a characterization of the class of Fredholm operators, that

is, a necessary and sufficient condition for A to be Fredholm.

Theorem 8.2 A linear bounded operator A is Fredholm if and only if

A = B + F , where B is an isomorphism and F has finite rank.

We prove these theorems in the next section.

8.1.2 Proofs

Let us first prove Theorem 8.2.

Proof of Theorem 8.2. From the proof of Theorem 8.1 that follows,

we see that if A = B + F , where B is an isomorphism and F has finite

rank, then A is Fredholm. To prove the converse, choose some orthonormal

bases {φj}1≤j≤n and {ψj}1≤j≤n, in N(A) and N(A∗), respectively, using
assumption (8.3). Define

Bu := Au−
n∑
j=1

(
u, φj

)
ψj := Au− Fu. (8.11)

Clearly F has finite rank, and A = B + F . Let us prove that B is an

isomorphism. If this is done, then Theorem 8.2 is proved.

We need to prove that N(B) = {0} and R(B) = H . It is known

(Banach’s theorem), that if B is a linear bounded injection and R(B) = H ,

then B−1 is a bounded operator, so B is an isomorphism because B is

bounded.

Suppose Bu = 0. Then Au = 0 (so that u ∈ N(A)), and Fu = 0

(because, according to (8.6), Au is orthogonal to Fu). Since {ψj}, 1 ≤ j ≤
n, is a linearly independent system, the equation Fu = 0 implies (u, φj) = 0

for all 1 ≤ j ≤ n, that is, u is orthogonal to N(A). If u ∈ N(A) and at the

same time it is orthogonal to N(A), then u = 0. So, N(B) = {0}.
Let us now prove that R(B) = H :

Take an arbitrary f ∈ H and, using (8.6), represent it as f = f1 + f2,

where f1 ∈ R(A) and f2 ∈ N(A∗) are orthogonal. Thus there is a up ∈
H and some constants cj such that f = Aup +

∑n
1 cjψj . We choose up

orthogonal to N(A). This is clearly possible.

We claim that Bu = f, where u := up − ∑n
1 cjφj . Indeed, us-

ing the orthonormality of the system φj , 1 ≤ j ≤ n, one gets Bu =

Aup +
∑n

1 cjψj = f .

Thus we have proved that R(B) = H . �
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We now prove Theorem 8.1.

Proof of Theorem 8.1. If A is Fredholm, then the statements (1) and

(2) of Theorem 8.1 are equivalent to (8.3) and (8.4), since (8.6) follows from

(8.4).

Let us prove that if A = B + F , where B is an isomorphism and F

has finite rank, then A is Fredholm. Both properties (8.3) and (8.4) are

known for operators in finite-dimensional spaces. Therefore to prove that

A is Fredholm it is sufficient to prove that equations (8.7) and (8.9) are

equivalent to linear algebraic systems in a finite-dimensional space.

Let us prove this equivalence. We start with equation (8.7), denote

Bu := w, and get an equation

w + Tw = f, (8.12)

that is equivalent to (8.7). Here, T := FB−1, is a finite-rank operator

that has the same rank n as F because B is an isomorphism. Equation

(8.11) is equivalent to (8.7): each solution to (8.7) is in one-to-one corre-

spondence with a solution of (8.12) since B is an isomorphism. In par-

ticular, the dimensions of the null-spaces N(A) and N(I + T ) are equal,

R(A) = R(I+T ), and R(I+T ) is closed. The last claim is a consequence of

the Fredholm alternative for finite-dimensional linear equations, but we give

an independent proof of the closedness of R(A) at the end of the Section.

Since T is a finite-rank operator, the dimension of N(I + T ) is finite

and is not greater than the rank of T . Indeed, if u = −Tu and T has finite

rank n, then Tu =
∑n

j=1(Tu, ej)ej , where {ej}1≤j≤n, is an orthonormal

basis of R(T ), and u = −∑n
j=1(u, T

∗ej)ej, so that u belongs to a subspace

of dimension n = r(T ).

Since A and A∗ enter symmetrically in the statement of Theorem 8.1,

it is sufficient to prove (8.3) and (8.4) for A and check that the dimensions

of N(A) and N(A∗) are equal.

To prove (8.3) and (8.4), let us reduce (8.9) to an equivalent equation

of the form

v + T ∗v = h, (8.13)

where T ∗ := B∗−1F ∗, is the adjoint to T, and

h := B∗−1g. (8.14)
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Since B is an isomorphism, (B−1)∗ = (B∗)−1. Applying B∗−1 to equation

(8.9), one gets an equivalent equation (8.13) and T ∗ is a finite-rank operator

of the same rank n as T .

The last claim is easy to prove: if {ej}1≤j≤n is a basis in R(T ), then

Tu =
∑n

j=1(Tu, ej)ej , and T
∗u =

∑n
j=1(u, ej)T

∗ej , so r(T ∗) ≤ r(T ). By

symmetry one has r(T ) ≤ r(T ∗), so r(T ) = r(T ∗), and the claim is proved.

Writing explicitly the linear algebraic systems, equivalent to the equa-

tions (8.12) and (8.13), one sees that the matrices of these systems are

adjoint. The system equivalent to equation (8.12) is:

ci +
n∑
1

tijcj = fi, (8.15)

where

tij :=
(
ej , T

∗ei
)
, cj := (w, T ∗ej), fi := (f, T ∗ei),

and the one equivalent to (8.13) is:

ξi +

n∑
1

t∗ijξj = hi, (8.16)

where

t∗ij = (T ∗ej , ei), ξj := (v, ej), hi := (h, ei),

and t∗ij is the matrix adjoint to tij . For linear algebraic systems (8.15) and

(8.16) the Fredholm alternative is a well-known elementary result. These

systems are equivalent to equations (8.7) and (8.9), respectively. There-

fore the Fredholm alternative holds for equations (8.7) and (8.9), so that

properties (8.3) and (8.4) are proved. �

In conclusion let us explain in detail why equations (8.12) and (8.15)

are equivalent in the following sense: every solution to (8.12) generates a

solution to (8.15) and vice versa.

It is clear that (8.12) implies (8.15): just take the inner product of

(8.12) with T ∗ej and get (8.15). So, each solution to (8.12) generates

a solution to (8.15). We claim that each solution to (8.15) generates a

solution to (8.12). Indeed, let cj solve (8.15). Define w := f −∑n
j=1 cjej.

Then Tw = Tf −∑n
j=1 cjTej =

∑n
i=1[(Tf, ei)ei −

∑n
j=1 cj(Tej, ei)ei] =∑n

i=1 ciei = f−w. Here we use (8.15) and take into account that (Tf, ei) =

fi and (Tej, ei) = tij . Thus, the element w := f −∑n
1 cjej solves (8.12), as

claimed.



A Characterization of Unbounded Fredholm Operators 129

It is easy to check that if {w1, . . . wk} are k linearly independent solu-

tions to the homogeneous version of equation (8.12), then the corresponding

k solutions {c1m, . . . cnm}1≤m≤k of the homogeneous version of the system

(8.15) are also linearly independent, and vice versa.

Let us give an independent proof of property (8.4):

R(A) is closed if A = B + F , where B is an isomorphism and F is a

finite-rank operator.

Since A = (I + T )B and B is an isomorphism, it is sufficient to prove

that R(I + T ) is closed if T has finite rank.

Let uj + Tuj := fj → f as j → ∞. Without loss of generality choose

uj orthogonal to N(I + T ). We want to prove that there exists a u such

that (I + T )u = f . Suppose first that sup1≤j<∞ ‖uj‖ < ∞, where ‖ · ‖
denotes the norm in H . Since T is a finite-rank operator, Tuj converges

in H for some subsequence, which is denoted by uj again. (Recall that in

finite-dimensional spaces bounded sets are precompact). This implies that

uj = fj−Tuj converges in H to an element u. Passing to the limit, one gets

(I + T )u = f. To complete the proof, let us establish that supj ‖uj‖ < ∞.

Assuming that this is false, one can choose a subsequence, denoted by

uj again, such that ‖uj‖ > j. Let zj := uj/‖uj‖. Then ‖zj‖ = 1, zj is

orthogonal to N(I +T ), and zj +Tzj = fj/‖uj‖ → 0. As before, it follows

that zj → z in H , and passing to the limit in the equation for zj one gets

z + Tz = 0. Since z is orthogonal to N(I + T ), it follows that z = 0. This

is a contradiction since ‖z‖ = limj→∞‖zj‖ = 1. This contradiction proves

the desired estimate and the proof is completed. �
This proof is valid for any compact linear operator T . If T is a finite-

rank operator, then the closedness of R(I + T ) follows also from a simple

observation: finite-dimensional linear spaces are closed.

8.2 A Characterization of Unbounded Fredholm Operators

8.2.1 Statement of the result

This Section is a continuation of Section 8.1, where bounded Fredholm

operators are studied.

We call a linear closed densely defined operator A : X → Y acting from

a Banach space X into a Banach space Y a Fredholm operator, and write

A ∈ Fred(X,Y ) if and only if

R(A) = R(A) (8.17)
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and

n(A) = n(A∗) := n <∞, n(A) := dimN(A), (8.18)

where N(A) := {u : Au = 0, u ∈ D(A)}.
In the literature the Noether operators are sometimes called Fredholm

operators. The Noether operators are operators for which (8.17) holds,

n(A) < ∞, n(A∗) < ∞, but n(A) may be not equal to n(A∗). Thus

Fred(X,Y ) is a proper subset of the Noether operators.

The Noether operators are called in honor of F. Noether, who was the

first to study a class of singular integral equations with operators of this

class in 1921 [77].

In Section 8.1 a proof of the Fredholm alternative and a characterization

of Fredholm operators are given for bounded linear operators. Recall that a

linear bounded operator F is called a finite-rank operator if dimR(F ) <∞,

where R(F ) is the range of F .

In this section these results are generalized to the case of closed un-

bounded linear operators. Namely, the following result is proved:

Theorem 8.3 If A is a Fredholm operator, then

A = B − F, (8.19)

where B is a linear closed operator, D(B) = D(A), R(B) = Y , N(B) =

{0}, and F is a finite-rank operator. Conversely, if (8.19) holds, where

B : X → Y is a linear closed densely defined operator, R(B) = Y , N(B) =

{0}, and F is a finite-rank operator, then A is closed, D(A) = D(B), and

(8.17) and (8.18) hold, so A is a Fredholm operator.

Below a proof of Theorem 8.3 is given. In the literature a character-

ization of unbounded Fredholm operators is not discussed, as it seems.

Theorem 8.3 is useful, for example, in the theory of elliptic boundary value

problems, but we do not go into further detail (see, e.g., [44], [45]).

8.2.2 Proof

1. Assume that A : X → Y is linear, closed, densely defined operator,

and (8.17) and (8.18) hold. Let us prove that then (8.19) holds, D(B) =

D(A), R(B) = Y,N(B) = {0}, B is closed, and F is finite-rank operator.

Let {ϕj}1≤j≤n be a basis of N(A) and {ψj}1≤j≤n be a basis of N(A∗).
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It is known that

R(A)⊥ = N(A∗), (8.20)

where R(A)⊥ is a set of linear functionals {ψj} in Y ∗ such that (ψj , Au) = 0

∀u ∈ D(A), where (ψj , f) is the value of a linear functional ψj ∈ Y ∗ on the

element f ∈ Y . Clearly, ψj ∈ N(A∗), 1 ≤ j ≤ n.

Define

Bu := Au +

n∑
j=1

(
hj, u

)
νj := (A+ F )u, νj ∈ Y, (8.21)

where F is a finite-rank operator, {νj}1≤j≤n is the set of elements of Y ,

biorthogonal to the set {ψj}1≤j≤n, (ψj , νm) = δjm :=

{
0, j 	= m

1, j = m
, and

{hj}1≤j≤n is the set of elements of X∗, biorthogonal to the set {ϕj}1≤j≤n,
(hj , ϕm) = δjm. Existence of sets biorthogonal to finitely many linearly

independent elements of a Banach space follows from the Hahn-Banach

theorem. An arbitrary element u ∈ X can be uniquely represented as

u = u1 +
∑n
j=1 cjϕj , where cj = const, and (hj , u1) = 0, 1 ≤ j ≤ n.

Let us check that N(B) = {0} and R(B) = Y . Assume Bu = 0, that

is Au +
∑n
j=1(hj , u)νj = 0. Apply ψm to this equation, use (ψm, Au) = 0,

and get

0 =

n∑
j=1

(
ψm, νj

)(
hj , u

)
=

n∑
j=1

δmj
(
hj, u

)
=
(
hm, u

)
, 1 ≤ m ≤ n.

Therefore Au = 0. So u ∈ N(A), and u =
∑n
j=1 cjϕj , cj = const. Apply

hm to this equation and use (hm, ϕj) = δmj to get cm = 0, 1 ≤ m ≤ n.

Thus u = 0. We have proved that N(B) = {0}.
To prove R(B) = Y , take an arbitrary element f ∈ Y and write f =

f1+ f2, where f1 = Au1 belongs to R(A), and f2 =
∑n

j=1 ajνj , aj = const.

Note that

Y = R(A)� Ln, (8.22)

where the sum is direct, Ln is spanned by the elements {νj}1≤j≤n, and
aj = (ψj , f). Indeed,

(
ψm, f

)
=
(
ψm, Au1

)
+

n∑
j=1

aj
(
ψm, νj

)
= am, 1 ≤ m ≤ n.
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Given an arbitrary f ∈ Y , f = Au1 +
∑n

j=1(ψj , f)νj , define u = u1 +∑n
j=1(ψj , f)ϕj , where (hj , u1) = 0, 1 ≤ j ≤ n. Then Bu = f . Indeed,

using (8.21) one has:

B

[
u1 +

n∑
j=1

(ψj , f)ϕj

]
= Au1 +

n∑
j=1

(
hj , u1

)
νj

+

n∑
j=1

(
hj ,

n∑
m=1

(
ψm, f

)
ϕm

)
νj = f.

(8.23)

Here the relations (hj , ϕm) = δjm, and (hj , u1) = 0 are used. We have

proved the relation R(B) = Y .

2. Let us now assume that A = B − F , where B : X → Y is a linear

closed densely defined operator, D(A) = D(B), N(B) = {0}, R(B) = Y ,

and F is a finite-rank operator. We wish to prove that (8.17) and (8.18)

hold and A is closed.

Let us prove (8.17). Assume that Aun := fn → f and prove that

f ∈ R(A).

One has Bun − Fun → f . Since N(B) = {0}, R(B) = Y , and B is

closed, B−1 is bounded by Banach’s theorem. Thus

un −B−1Fun −→ B−1f. (8.24)

Since F is a finite-rank operator, B−1F is compact. Therefore, if supn ‖
un ‖≤ c, where c is a constant, then a subsequence, denoted un again, can

be found, such that B−1Fun converges in the norm of X . Consequently,

(8.24) implies un → u, u−B−1Fu = B−1f , so u ∈ D(B) and Bu−Fu = f .

To finish the proof, let us establish the estimate supn ‖un‖ ≤ c. Assum-

ing ‖unk
‖ → ∞ and denoting nk by n and B−1F by T , define vn := un

‖un‖ ,‖vn‖ = 1. Then vn − Tvn → 0 as n → ∞. One may assume that vn is

chosen in a direct complement of N(I − T ) in X . Arguing as above, one

selects a convergent in X subsequence, denoted again by vn, vn → v, and

gets v − Tv = 0. Since v belongs to the direct complement of N(I − T ),

it follows that v = 0. On the other hand, since ‖v‖ = limn→∞ ‖vn‖ = 1,

one gets a contradiction, which proves the desired estimate supn ‖un‖ ≤ c.

Property (8.17) is proved.

Let us prove that A is closed. If Aun → f and un → u, then Bun −
Fun → f , and the above argument shows that Bu − Fu = f so Au = f .

Thus A is closed.

Finally, let us prove (8.18).
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Let Au = 0, i.e., Bu − Fu = 0. Applying the bounded linear injective

operator B−1, one gets an equivalent equation

u− Tu = 0, T := B−1F, T : X −→ X, (8.25)

with a finite-rank operator T . It is an elementary fact that dimN(I−T ) :=
n < ∞ if T is a finite-rank operator. Since N(A) = N(I − T ), one has

dimN(A) = n <∞.

Now let A∗v = 0. Then

B∗v − F ∗v = 0. (8.26)

Since (B∗)−1 = (B−1)∗ is a bounded and injective linear operator, the

elements v are in one-to-one correspondence with the elements w := B∗v,
and (8.26) is equivalent to

w − T ∗w = 0, T ∗ = F ∗(B∗)−1, (8.27)

so that T ∗ is the adjoint to operator T := B−1F .

Since T is a finite-rank operator, it is an elementary fact that dimN(I−
T ∗) = dim(I − T ) = n <∞. Since N(A∗) = N(I − T ∗), property (8.18) is

proved.

Theorem 8.3 is proved. �
An immediate consequence of this theorem is the Fredholm alternative

for unbounded operators A ∈ Fred (X,Y ).

8.3 Fredholm Alternative for Analytic Operators

Let X and Y be Banach spaces and A(k) : X → Y be a linear

bounded operator-function analytic in a connected domain Δ of a com-

plex plane k. Assume that the range R(A(k)) is closed and dimN(A(k)) =

dimN(A∗(k)) = r < ∞, so A(k) ∈ Fred (X,Y ) is Fredholm operator with

index zero, and Fred (X,Y ) denotes the set of all such operators.

Theorem 8.4 ([136]) Under the above assumptions either A−1(k) does

not exist ∀k ∈ Δ, or A−1(k) exists for all k ∈ Δ except, possibly, for a

discrete set {kj}. The points kj are poles of A−1(k), and the coefficients ap
in the expansion A−1(k) =

∑∞
p=−mj

ap(k − kj)
p are finite-rank operators.

This conclusion remains valid if one assumes that A(k) is a meromor-

phic operator-function of k in Δ, provided that b−m0 ∈ Fred (X,Y ), where

A(k) =
∑∞
p=−m0

bp(k − k0)
p and k0 ∈ Δ is a pole of A(k).
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Proof. First we assume that A(k) is analytic in Δ. Choose a finite-rank

operator F such that B(k) := A(k) + F is an isomorphism of X onto Y .

This is possible, as was shown in Section 8.2. Equation A(k)u = f is

equivalent to B(k)u = Fu + f and to u = B−1(k)Fu + B−1(k)f . Since

B(k) is analytic in Δ and the operator B−1(k) is bounded, it follows that

B−1(k) is analytic in Δ.

Therefore

u = T (k)u+ h(k), T (k) := B−1(k)F, h(k) := B−1(k)F,

where h(k) is analytic in Δ and T (k) is an analytic in Δ finite-rank operator-

function. If d(k) := det(I − T (k)) ≡ 0, then the operator I − T (k) is not

boundedly invertible for all k ∈ Δ. Otherwise d(k), which is an analytic

function, may have only a discrete set of zeros in Δ. If d(κ) = 0, then

d(k) 	= 0 for |k − κ| < δ, where δ > 0 is a sufficiently small number, and,

by Kramer’s formulas, one concludes that u(k) is a meromorphic function

in Δ. In a neighborhood of the point κ the Laurent expansion of the

operator A−1(k) = (I − T (k))−1B−1(k) has coefficients which are finite-

rank operators, because T (k) is a finite-rank operator. This proves the first

conclusion of Theorem 8.4 (under the assumptions of analyticity of A(k) in

Δ and of Fredholmness of A(k): A(k) ∈ Fred (X,Y )).

Assume now that A(k) is meromorphic in Δ, κ is a pole of order m.

Then (k− κ)mA(k) := Q(k) is analytic in a neighborhood of κ. If b−m0 :=

limk→κ(k − κ)mA(k) is a bounded Fredholm operator, then Q(k) is an

analytic bounded Fredholm operator for |k− κ| < δ, for a sufficiently small

δ > 0. Thus the first conclusion of Theorem 8.4 applies and Theorem 8.4

is proved. �



Chapter 9

Boundary-Value Problems in Rough
Domains

In this chapter boundary-value problems for the Laplace and Helmholtz

operators are considered under weak assumptions on the smoothness of

the domains. The theory we develop can be easily generalized to the case

of uniformly elliptic formally self-adjoint differential operators with con-

stant coefficients near infinity. We assume nothing about smoothness of

the boundary S of a bounded domain D when the homogeneous Dirichlet

boundary condition is imposed; we assume boundedness of the embedding

i1 : H1(D) → L2(D) when the Neumann boundary condition is imposed;

we assume boundedness of the embeddings i1 and of i2 : H1(D) → L2(S)

when the Robin boundary condition is imposed, and, if, in addition, i1
and i2 are compact, then the boundary-value problems with the spectral

parameter are of Fredholm type. Here i1 is the embedding of H1(D) (or

H1(D̃)) into L2(D) (L2(D̃)), D′ := R
n \ D is the exterior domain, and

D̃ ⊂ D′ is a bounded domain whose boundary consists of two components:

S := ∂D and S̃, where S̃ is a smooth compact manifold. The space L2(S)

is the L2 space on S with respect to Hausdorff (n−1)-dimensional measure

on S.

Our theory is developed in such a way that the interior and exterior

boundary-value problems are studied similarly in spite of the fact that

the corresponding operators have discrete spectrum in the case of interior

boundary-value problems and continuous spectrum in the case of exterior

ones. The novel points consist of the usage of the limiting absorption prin-

ciple, the relation between closed quadratic forms and selfadjoint opera-

tors, and the construction of the theory under weak assumptions about the

boundaries of the domains, which can be much rougher than the Lipschitz

domains. We give examples of admissible bounded domains whose bound-

aries have countably many connected components and admissible domains

135
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whose boundaries are not locally representable by a graph of a Lipschitz

function . The results in this Chapter are based on the works [144], [107],
[103], [104], [31], and the presentation follows closely [31].

9.1 Introduction

An essentially self-contained presentation of a method for a study of

boundary-value problems for second-order elliptic equations in domains

with non-smooth boundary is given in this Section. The novel points include

the usage of the limiting absorption principle for the proof of the existence

of the solution. The theory of boundary-value problems for interior and

exterior domains are constructed similarly in spite of the fact that the

Dirichlet Laplacian has a discrete spectrum in the former case and a con-

tinuous spectrum in the latter case. For brevity of the presentation we

consider the boundary-value problems for Laplacian, and the three clas-

sical boundary conditions. We study interior and exterior boundary-value

problems and obtain the existence results and the Fredholm property under

weak assumptions on the smoothness of the boundary. The method we use

is applicable for general second-order elliptic equations. Elliptic boundary-

value problems were studied in numerous books and papers. We mention
[29] and [57], where many references can be found. In [65] embedding the-

orems for a variety of non-smooth domains have been studied. In [104]

the obstacle scattering problems were studied for non-smooth obstacles. In
[107] the [107] the boundary-value problems and direct and inverse obsta-

cle scattering problems have been studied. In [30] embedding theorems in

some classes of non-smooth (rough) domains were studied.

Consider the boundary-value problems

−Δu = F in D, F ∈ L2(D), (9.1)

u = 0 on S := ∂D. (9.2)

The boundary conditions can be the Neumann one

uN = 0 on S, (9.3)

where N is the outer unit normal to S, or the Robin one:

uN + h(s)u = 0 on S, (9.4)

where h(s) ≥ 0 is a bounded piecewise-continuous function on S.
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We are interested in similar problems in the exterior domain D′ := Rn \
D, and we consider the case n = 3. The case n > 3 can be treated similarly.

If n = 2 some additional remarks are in order since the fundamental solution

in this case changes sign and tends to infinity as |x − y| := rxy → ∞. If

n = 3, then g(x, y) := 1
4πrxy

, and if n = 2, then g(x, y) = 1
2π ln 1

rxy
,

x, y ∈ R
n, −Δg = δ(x− y) in R

n, and δ(x) is the delta-function.

Below (·, ·) denotes the inner product in L2(D) := H0, L2
0(D) is the

set of L2(D) functions with compact support, L2
0(D

′) is the set of L2(D′)

functions which vanish near infinity,
◦
H 1 is the closure of C∞

0 (D) in the

H1 := H1(D)−norm defined as ‖u‖1 := (
∫
D(|u|2+|∇u|2)dx)1/2. We denote

‖u‖ := (
∫
D |u|2dx)1/2, and let Dε := {x : x ∈ D, dist(x, S) < ε}, where

ε > 0 is a small number, and dist(x, S) is the distance from the point x to

S, and D′
ε is defined similarly.

If the boundary conditions are non-homogeneous, e.g., u = f on S, then

we assume that there exists a function v ∈ H1(D)
⋂
H2

loc(D), Δv ∈ L2(D),

such that v = f on S and consider w := u − v. The function w satisfies

equation (9.1) with F replaced by F +Δv, and w satisfies (9.2). Similarly

one treats inhomogeneous Neumann and Robin boundary conditions. In the

case of inhomogeneous boundary conditions the smoothness assumptions on

the boundary S are more restrictive than in the case of the homogeneous

boundary conditions.

Let us reformulate problems (9.1)–(9.4) so that the assumptions on the

smoothness of S are minimal.

In the case of the Dirichlet problem (9.1)–(9.2) we use the weak formu-

lation:

u solves (9.1)–(9.2) iff u ∈
◦
H1(D) :=

◦
H1 and

[u, φ] := (∇u,∇φ) = (F, φ) ∀φ ∈
◦
H1. (9.5)

The weak formulation (9.5) of the Dirichlet problem (9.1)–(9.2) does not

require any smoothness of S, and boundedness of D is the only restriction

on D for the Dirichlet problem.

The weak formulation of the Neumann problem (9.1), (9.3) is:

[u, φ] = (F, φ) ∀φ ∈ H1. (9.6)

An obvious necessary condition on F for (9.6) to hold is

(F, 1) = 0. (9.7)
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Although the statement of the problem (9.6) does not require any smooth-

ness assumption on S, one has to assume that S is smooth enough for the

Poincare-type inequality to hold:

inf
m∈R1

‖u−m‖ ≤ c‖∇u‖, c = const > 0, (9.8)

see Remark 9.1 below.

The infimum in (9.8) is attained at m0 = 1
|D|
∫
D
udx, |D| := measD,

and (u −m0, 1) = 0. If (u, 1) = 0, then (9.8) implies ‖u‖ ≤ c‖∇u‖. The

role of this inequality will be clear from the proof of the existence of the

solution to (9.6) (see Section 9.2).

Finally, for the Robin boundary condition the weak formulation of the

boundary-value problem (9.1), (9.4) is:

[u, φ] +

∫
S

huφ̄ds = (F, φ) ∀φ ∈ H1. (9.9)

For (9.9) to make sense, one has to be able to define u on S. For this

reason we assume that the embedding i2 : H1(Dε) → L2(S) is bounded.

We also assume the compactness of i2, and this assumption is motivated in

the proof of the existence and uniqueness of the solution to (9.9), it yields

the Fredholm property of the boundary-value problem.

Let us formulate our results. We assume that D ⊂ R
n, n = 3, is a

bounded domain and F ∈ L2(D) is compactly supported. This assumption

will be relaxed in Remark 9.5.

Theorem 9.1 The solution u ∈
◦
H1(D) of (9.5) exists and is unique.

Theorem 9.2 If D is such that (9.8) holds and F satisfies (9.7), then

there exists a solution u to (9.6), and {u + c}, c = const, is the set of all

solutions to (9.6) in H1.

Theorem 9.3 If D is such that i1 : H1(D) → L2(D) and i2 : H1(D) →
L2(S) are bounded, F ∈ L2

0(D) and h ≥ 0 is a piecewise-continuous bounded

function on S, h �≡ 0, then problem (9.9) has a solution in H1(D) and this

solution is unique. If i1 and i2 are compact, then the problem

[u, φ] +

∫
S

huφ̄ds− λ(u, φ) = (F, φ), λ = const ∈ R

is of Fredholm type.

Similar results are obtained in Section 9.3 for the boundary-value prob-

lems in the exterior domains (Theorem 9.4).
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9.2 Proofs

Proof of Theorem 9.1. One has

|[u, φ]| = |(F, φ)| ≤ ‖F‖‖φ‖ ≤ c‖F‖‖ϕ‖1 (9.10)

where we have used the inequality

‖φ‖ ≤ c‖φ‖1, φ ∈
◦
H1, (9.11)

which holds for any bounded domain, i.e., without any smoothness assump-

tions on D. Note that the norm [u, u]1/2 := [u] is equivalent to H1 norm

on
◦
H1 : c1‖u‖1 ≤ [u] ≤ ‖u‖1, c1 = const > 0. Inequality (9.10) shows that

(F, φ) is a bounded linear functional in H1(D) so, by the Riesz theorem

about linear functionals in a Hilbert space, one has

[u, φ] = [BF, φ] ∀φ ∈
◦
H1,

where B is a bounded linear operator from L2(D) into
◦
H1. Thus u = BF

is the unique solution to (9.5). �
Proof of Theorem 9.2. If (F, 1) = 0, then one may assume that (φ, 1) =

0 because (F, φ) = (F, φ −m) and the constant m can be chosen so that

(φ −m, 1) = 0 if D is bounded. If D is such that (9.8) holds, then

|[u, φ]| = |(F, φ −m)| ≤ ‖F‖ inf
m

‖φ−m‖ ≤ c‖F‖‖∇φ‖. (9.12)

Thus (F, φ) = [BF, φ], where B : L2(D) → H1 is a bounded linear operator.

Thus u = BF solves (9.6), for any constant m and u+m also solves (9.6)

because [m,φ] = 0. If u and v solve (9.6), then w := u − v solves the

equation [w, φ] = 0 ∀φ ∈ H1. Take φ = w and get [w,w] = ‖∇w‖2 = 0.

Thus ∇w = 0 and w = const. Theorem 9.2 is proved. �
Remark 9.1 Necessary and sufficient conditions on D for (9.8) to hold

one can find in [65]. Inequality (9.8) is equivalent to the boundedness of

the embedding in i1 : L1
2(D) → L2(D). By L1

2 the space of functions u such

that ‖∇u‖ <∞ is denoted.

Remark 9.2 If one wants to study the problem

−Δu− λu = F, u = 0 on S (9.13)

where λ = const, and a similar problem with the Neumann boundary condi-

tion (9.3) or with the Robin condition (9.4) to be of Fredholm type, then one
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has to assume the operators B in the proofs of Theorem 9.1 and Theorem

9.2 to be compact in
◦
H1 and in H1 respectively. Originally the operators B

were acting from L2(D) onto
◦
H1 and H1 (respectively in Theorem 9.1 and

in Theorem 9.2). Thus, B are defined on
◦
H1 ⊂ L2(D) and on H1 ⊂ L2(D)

respectively.

Proof of Theorem 9.3. If the embedding i2 : H1(Dε) → L2(S) is

bounded, then

|
∫
S

huφ̄ds| ≤ sup
S

|h|‖u‖L2(S)‖φ‖L2(S) ≤ c‖φ‖1. (9.14)

By Riesz’s theorem one gets∫
S

huφ̄ds = (Tu, φ)1.

Equation (9.9) can be written as

(Au+ Tu−BF, φ)1 = 0 ∀φ ∈ H1, (9.15)

where [u, φ] = (Au, φ)1, (F, φ) = (BF, φ)1. Thus

Qu−BF := Au+ Tu−BF = 0, (9.16)

where A is a bounded linear operator in H1, ‖A‖ ≤ 1 because [u, u] ≤
(u, u)1, ||B|| ≤ 1 because |(BF, φ)1| = |(F, φ)| ≤ ‖F‖‖φ‖ ≤ ‖F‖1‖φ‖1, and
T is a bounded operator in H1 if the embedding operator i2 : H1(Dε) →
L2(S) is bounded. If i2 is compact, then T is compact in H1. The operator

Q := A+ T is linear, defined on all of H1, and bounded. The expression

N2(u) := (Qu, u)1 = [u, u] +

∫
S

h|u|2ds

defines a norm N(u) equivalent to ‖u‖1.
Let us prove this equivalence.

By (9.14) one has N2(u) ≤ c‖u‖21. Also
‖u‖21 = [u, u] + (u, u) ≤ N2(u) + (u, u) ≤ c1N

2(u)

because

‖u‖ ≤ cN(u),

where c = const > 0 stands for various constants independent of u.

Let us prove the inequality ‖u‖ ≤ cN(u).
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Assuming that it fails, one finds a sequence un ∈ H1, ‖un‖ = 1,

such that ‖un‖ ≥ nN(un), so N(un) ≤ 1
n . Thus ‖∇un‖ → 0 and∫

S
h|un|2ds → 0. Since ‖un‖ = 1 one may assume that un⇀v, where ⇀

denotes weak convergence in L2(D). If un⇀v and ∇un⇀0, then ∇v = 0,

so v = C = const, and

0 = lim
n→∞

∫
S

h|un|2ds = C2

∫
S

hds,

so C = 0. The inequality is proved.

Thus, the norms N(u) and ‖u‖1 are equivalent, the operator Q is

positive definite, selfadjoint as an operator in H1, and therefore Q has

a bounded inverse in H1. Thus, equation (9.16) has a unique solution

u = Q−1BF in H1. The statement of Theorem 9.3 concerning Fredholm’s

type of problem (9.9) follows from Lemma 9.1 below.

Theorem 9.3 is proved. �

Remark 9.3 As in Remark 9.2, if B is compact in H1, then the problem

[u, φ] +

∫
S

huφ̄ds = λ(u, φ) + (F, φ), λ = const (9.17)

is of Fredholm type. This problem can be written as Qu := Au + Tu =

λBu +BF , or

u = λQ−1Bu+Q−1BF (9.18)

where the operator Q−1B is compact in H1.

Lemma 9.1 The operator B is compact in H1 if and only if the embed-

ding operator i1 : H
1(D) → L2(Dε) is compact.

Proof. Suppose that the embedding i1 : H1(D) → L2(D) is compact.

One has ‖u‖2 = (Bu, u)1 = (u,Bu)1, so B is a linear positive, symmetric,

and bounded operator in H1. Here the inner product (Bu, u)1 is equivalent

to the inner product [Bu, u]. One has (u, φ) = (Bu, φ)1, so ‖Bu‖1 ≤ ‖u‖ ≤
‖u‖1, so ‖B‖H1→H1 ≤ 1. A linear positive, symmetric, bounded operator

B, defined on all of H1, is selfadjoint. The operator B1/2 > 0 is well

defined, B and B1/2 are simultaneously compact, and ‖u‖ = ‖B1/2u‖1.
Thus, if i1 is compact then the inequality ‖un‖1 ≤ 1 implies the existence

of a convergent in L2(D) subsequence, denoted again un, so that B1/2un
converges in H1. Thus, B1/2 is compact in H1 and so is B.

Conversely, if B is compact in H1 so is B1/2. Therefore, if un is a

bounded in H1 sequence, ‖un‖1 ≤ 1, then B1/2unk
is a convergent in H1
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sequence. Denote the subsequence unk
again un. Then un is a convergent in

H0 = L2(D) sequence because ‖un‖ = ‖B1/2un‖1. Therefore i1 is compact.

Lemma 9.1 is proved. �

Remark 9.4 We have used the assumptions h ≥ 0 and h �≡ 0 in the proof

of Theorem 9.3. If h changes sign on S but the embeddings i2 : H1(D) →
L2(S) and i1 : H1(D) → L2(D) are compact, then problem (9.9) is still of

Fredholm’s type because T is compact in H1 if i2 is compact.

9.3 Exterior Boundary-Value Problems

Consider boundary-value problems (9.1), (9.2), (9.3), (9.4) in the exterior

domainD′ = R
3\D. The closure ofH1

0 (D
′) in the norm ‖u‖1 := {∫

D′(|u|2+
|∇u|2)dx}1/2 is denoted byH1 = H1(D′) and H1

0 (D
′) is the set of functions

vanishing near infinity and with finite norm ‖u‖1 < ∞. We assume that

D is bounded. The weak formulation of the boundary-value problems is

given similarly to (9.5), (9.6) and (9.9). The corresponding quadratic forms

Dirichlet tD, Neumann tN and Robin tR, where the forms

tD[u, u] = (∇u,∇u), u ∈
◦
H 1(D′); tN [u, u] = (∇u,∇u), u ∈ H1(D′);

tR[u, u] = (∇u,∇u)+〈hu, u〉, u ∈ H1(D′), 〈u, v〉 :=
∫
S

uvds, 0 ≤ h ≤ c,

are nonnegative, symmetric and closable. Here and below, c > 0 stands

for various constants. Nonnegativity and symmetry of the above forms are

obvious.

Let us prove their closability.

By definition a quadratic form t[u, u] bounded from below, i.e., t[u, u] >

−m(u, u), m = const, and densely defined in the Hilbert space H =

L2(D′), is closable if t[un − um, un − um] −→
n,m→∞ 0 and un −→

H
0 imply

t[un, un] −→
n→∞ 0. The closure of the domain D[t] of the closable quadratic

form in the norm [u] := {t[u, u]+(m+1)(u, u)}1/2 is a Hilbert spaceHt ⊂ H

densely embedded in H . The quadratic form t[u, u] is defined on Ht and

this form with the domain of definition Ht is closed.

To prove the closability, consider, for example, tD, and assume un −→
H

0,

(∇un −∇um,∇un −∇um) → 0 as n,m→ ∞. Then ∇un −→
H

f , and

(f, φ) = lim
n→∞(∇un, φ) = − lim

n→∞(un,∇φ) = 0, ∀φ ∈ C∞
0 . (9.19)
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Thus f = 0, so tD is closable. Similarly one checks that tN
and tR are closable. Let us denote by H1

2,2(D
′) the completion

of C(D′)
⋂
C∞(D′)

⋂
H1

0 (D
′) in the norm ‖u‖ := (‖∇u‖2L2(D′) +

‖∇u‖2L2(S))
1/2.

For an arbitrary open set D ⊂ R
3 with a finite volume (|D| <∞, where

|D| := measD is the volume of D) the inequality

‖u‖L3(D) ≤ c
(‖∇u‖L2(D) + ‖u‖L2(S)

)
(9.20)

holds, and the embedding operator i : H1
2,2(D) → Lq(D) is compact if q < 3

and |D| <∞ ([65, p.258]).

If D is an extension domain, i.e., D has an extension property, then the

inequality

‖u‖L2(S) ≤ c‖u‖1, (*)

where c > 0, may have no sense because the trace on the boundary may be

not well defined, since the boundary may have Hausdorff dimension greater

than n− 1, where n is the dimension of the space.

The extension property, D ⊂ EV �p , means that there exists a linear

bounded extension operator E : V �p (D) → V �p (R
3), Eu = u in D.

The space V �p (D) :=
⋂�
j=0 L

j
p(D) and Ljp(D) is the set of functions with

the finite norm

‖u‖L�
p(D) =

∥∥∥∥∥∥∥

⎛
⎝∑

|α|=�
|Dαu|2

⎞
⎠

1/2
∥∥∥∥∥∥∥
Lp(D)

, p > 0.

If D satisfies cone property, then D is an extension domain. If D ⊂ C0,1

is a Lipschitz domain, then D satisfies cone property and therefore D is

an extension domain. Inequality (9.20) may hold for some domains which

have no extension property. Estimate (∗) may fail for some domains for

which (9.20) holds. If the Hausdorff 2-dimensional measure |S| := s(S) of

S is finite then a sufficient condition on D for (∗) to hold is given in [65,

p.262].

Consider the closed symmetric forms tD, tN and tR. Each of these forms

define a unique selfadjoint operator A in H = L2(D′), D(A) ⊂ H1(D′) ⊂
H , (Au, v) = t[u, v], u ∈ D(A), v ∈ D[t], A = AD, A = AN , and A = AR,

respectively.

Let L2,a := L2(D′, (1 + |x|)−a), a ∈ (1, 2), ‖u‖2L2,a
=
∫
D′

|u|2dx
(1+|x|)a and

L2
0 be the set of L2(D′) functions vanishing near infinity.
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Recall that D̃ ⊂ D′ is a bounded domain whose boundary consists

of S := ∂D and S̃, which is a smooth compact manifold. Assume that

i′1 : H1(D̃)−→L2(D̃) and i′2 : H1(D̃) → L2(S) are compact. Then the

following theorem holds:

Theorem 9.4 For any F ∈ L2
0, each of the boundary-value problems:

Aiu = F, i = D,N or R, Aiu = −Δu, (9.21)

has a solution u = limε↓0(A − iε)−1F := (A − i0)−1F , u ∈ H2
loc(D

′),
u ∈ L2,a, a ∈ (1, 2), and this solution is unique.

Remark Equation (9.21) is understood as the weak formulation of the

exterior boundary- value problem with the Dirichlet or Neumann or Robin

boundary condition.

Similar result holds for the operator A − k2, where k = const > 0, in

which case the solution u satisfies the radiation condition at infinity:

lim
r→∞

∫
|s|=r

|∂u
∂r

− iku|2ds = 0. (9.22)

Proof of Theorem 9.4.

Uniqueness. If k = 0, then uniqueness follows from the maximum priciple.

If k > 0, then uniqueness can be established with the help of the radiation

condition. We give details for the case k > 0 at the end of this chapter. �
Existence. Since A = Ai is selfadjoint, the equation

(A− iε)uε = F, ε = const > 0, A = −Δ, (9.23)

has a unique solution uε ∈ H = L2(D′). Let us prove that if F ∈ L2,−a,
then there exists the limit

u = lim
ε→0

uε, lim
ε→0

‖u− uε‖L2,a = 0, (9.24)

and u solves (9.21). Thus the limiting absorption principle holds at λ = 0.

Recall that the limiting absorption principle holds at a point λ if the limit

u := limε→0(A − λ − iε)−1F exists in some sense and solves the equation

(A− λ)u = F .

To prove (9.24), assume first that

sup
1>ε>0

‖uε‖L2,a ≤ c, (9.25)

where c = const does not depend on ε. If (9.25) holds, then (9.24) holds,

as we will prove. Finally, we prove (9.25).
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Let us prove that (9.25) implies (9.24). Indeed, (9.25) implies

‖uε‖L2(D′
R) ≤ c, (9.26)

where D′
R := D′⋂BR, BR := {x : |x| ≤ R}, and we choose R > 0 so that

suppF ⊂ B′
R. It follows from (9.26) that there exists a sequence εn → 0

such that un := uεn converges weakly: un ⇀ u in L2(D′
R). From the

relation

t[un, φ] = (F, φ), (9.27)

where the form t corresponds to the operator A in (9.23) and the choice

φ = un is possible, it follows that

ti[un, un] = ‖∇un‖L2(D′) ≤ c, i = D,N (9.28)

and

ti[un, un] = ‖∇un‖2L2(D′) +

∫
S

h|un|2ds ≤ c, i = R. (9.29)

From (9.25) and (9.23) it follows that

‖Δun‖L2(D′
R) ≤ c. (9.30)

By the known elliptic inequality:

‖u‖H2(D1) ≤ c(D1, D2)
(‖Δu‖L2(D2) + ‖u‖L2(D2)

)
, D1 � D2, (9.31)

where H2 is the usual Sobolev space, it follows from (9.28) and (9.26) that

‖un‖H2(D1) ≤ c, (9.32)

where D1 � D′ is any bounded strictly inner subdomain of D′. By the

embedding theorem, it follows that there exists a u such that

lim
n→∞ ‖un − u‖H1(D1) = 0, D1 � D′. (9.33)

From (9.33) and (9.23) it follows that limn→∞ ‖Δun − Δu‖ = 0, and by

(9.31) one concludes

lim
n→∞ ‖un − u‖H2(D1) = 0, D1 � D′. (9.34)

Passing to the limit in (9.23) with ε = εn one gets equation (9.21) for u in

F ′. From (9.28) or (9.29) it follows that

un −→
H1(D′

R)
u for any R > 0. (9.35)
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Outside the ball BR one has the equation

−Δun − iεnun = 0 in B′
R := R

3 \BR, un(∞) = 0, (9.36)

and, by Green’s formula, one gets

un(x) =

∫
SR

(
gn
∂un
∂N

− un
∂gn
∂N

)
ds, x ∈ B′

R, SR := {s : |s| = R},
(9.37)

whereN is the outer normal to SR and gn = eγ
√

εn|x−y|
4π|x−y| , γ := −1+i√

2
.

By (9.34) and the embedding theorem, one has

lim
n→∞

(
‖un − u‖L2(SR) +

∥∥∥∥∂un∂N
− ∂u

∂N

∥∥∥∥
L2(SR)

)
= 0. (9.38)

Passing to the limit in (9.37) one gets

u(x) =

∫
SR

(
g
∂u

∂N
− u

∂g

∂N

)
ds, x ∈ B′

R, g :=
1

4π|x− y| . (9.39)

Thus

|u(x)| ≤ c

|x| , x ∈ B′
R, (9.40)

and un(x) satisfies (9.40) with a constant c independent of n.

If the Dirichlet condition is imposed, then the embedding i′ :
◦
H1(D̃) →

L2(D̃) is compact for any bounded domain D̃. If the Neumann condition is

imposed, then the compactness of the embedding i′1 : H1(D̃) → L2(D̃) im-

poses some restriction on the smoothness of S (remember that S̃ is assumed

smooth), and the above embedding operator is not compact for some open

bounded sets D̃. However, this restriction on the smoothness of S is weak:

it is satisfied for any extension domain. If the Robin condition is imposed,

then we use compactness of the operator i′2 : H1(D̃) → L2(S) for passing

to the limit

lim
n→∞[(∇un,∇un) + 〈hun, un〉] = (∇u,∇u) + 〈hu, u〉.

If the embedding operator i′1 : H1(D̃) → L2(D̃) is compact, then (9.28),

(9.33) and (9.40) imply the following three conclusions:

lim
n→∞ ‖un − u‖L2(D′

R) = 0, ∀R <∞, (9.41)

un ⇀ u in H1(D′
R), (9.42)
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lim
n→∞ ‖un − u‖L2,a = 0. (9.43)

Note that (9.43) follows from (9.41) and (9.40) if a > 1. Indeed,

∫
|x|>R

|un − u|2dx
(1 + |x|)1+a ≤ c

∫
|x|≥R

dx

(1 + |x|)1+a|x|2 ≤ c

Ra
.

For an arbitrary small δ > 0, one can choose R so that c
Ra < δ and fix such

an R. For a fixed R one takes n sufficiently large and use (9.41) to get

∫
D′

R

|un − u|2dx
(1 + |x|)1+a < δ.

This implies (9.43).

The limit u solves problem (9.21). We have already proved uniqueness

of its solution. therefore not only the subsequence un converges to u, but

also uε → u as ε→ 0. We have proved that (9.25) implies (9.24).

To complete the proof of the existence of the solution to (9.21) one has

to prove (9.25). Suppose (9.25) is wrong. Then there is a sequence εn → 0

such that ‖uεN‖L2,a := ‖un‖L2,a → ∞. Let vn := un

‖un‖2,a
. Then

‖vn‖2,a = 1 (9.44)

Avn − iεnvn =
F

‖un‖2,a . (9.45)

By the above argument, relation (9.44) implies the existence of v ∈ L2,a

such that

lim
n→∞ ‖vn − v‖2,a = 0, (9.46)

and

Av = 0. (9.47)

By the uniqueness result, established above, it follows that v = 0. Thus

(9.46) implies limn→∞ ‖vn‖2,a = 0. This contradicts to (9.44).

This contradiction proves Theorem 9.4. �

Remark 9.5 The above argument is valid also for solving the problem

Aiu− λu = F, i = D,N,R, λ ∈ R, (9.48)

provided that problem (9.48) with F = 0 has only the trivial solution.
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One may also weaken the assumption about F . If F ∈ L2,−1, then (9.39)

should be replaced by

u(x) =

∫
SR

(
g
∂u

∂N
− u

∂g

∂N

)
ds−

∫
B′

R

g(x, y)F (y)dy. (9.49)

If a > 3, then, using the Cauchy inequality, one gets:

∣∣∣∣∣
∫
B′

R

g(x, y)Fdy

∣∣∣∣∣
2

≤ c

∫
B′

R

dy

|x− y|2(1 + |y|)a
∫
B′

R

|F |2(1 + |y|)ady ≤ c

|x|2 ,
(9.50)

for large |x|, so that (9.40) holds if F ∈ L2,−a, a > 3. The rest of the

argument is unchanged.

Remark 9.6 We want to emphasize that the assumptions on the smooth-

ness of the boundary S under which we have proved existence and unique-

ness of the solutions to boundary-value problems are weaker than the usual

assumptions for the Neumann and Robin boundary conditions. For the

Dirichlet condition u = 0 on S no assumptions, except boundedness of D,

are used. For the Neumann condition, uN = 0 on S, only compactness of

the embedding operator i′1 : H1(D̃) → L2(D̃) is used, and for the Robin

boundary condition, uN + hu = 0 on S, 0 ≤ h ≤ c, compactness of both of

the embedding operators i′1 and i′2 : H1(D̃) → L2(S) is used.

Our arguments can be applied for a study of the boundary-value problems

for second-order formally selfadjoint elliptic operators and for nonselfad-

joint sectorial second-order elliptic operators. In [45] one finds the theory

of sectorial operators and the corresponding sectorial sesquilinear forms.

In conclusion let us prove the uniqueness theorem mentioned below

Theorem 9.4 in the case k > 0. Namely, if in (9.21) one has F = 0 and

A − k2 in place of A = Ai, where k = const > 0, then a weak solution

to this homogeneous (9.21), which satisfies the radiation condition (9.22),

must vanish. Let us prove this for the Robin boundary condition. Define

W := u1 − u2. One has:

∫
D′

gradW grad φ̄dx+

∫
S

σWφ̄ds = 0, (9.51)

for all φ ∈ H1
loc vanishing near infinity, and W satisfies (9.22). From (9.22)
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one gets

lim
r→∞

∫
|x|=r

(|Wr|2 + k2|W |2) ds+ lim
r→∞ ik

∫
|x|=r

(
WrW̄ − W̄rW

)
ds = 0 .

(9.52)

The second integral vanishes because of the radiation condition. Thus,

lim
r→∞

∫
|x|=r

(|Wr |2 + k2|W |2) ds = 0. (9.53)

This and the known lemma (see e.g., [133], p. 25) imply that W = 0 near

infinity. By the unique continuation property for the solution to homoge-

neous Helmholtz equation, W = 0 in D′.
See also [104] for more details.

9.4 Quasiisometrical Mappings

The main purpose of this section is to study boundary behavior of quasi-

isometrical homeomorphisms.

9.4.1 Definitions and main properties

Let us start with some definitions.

Definition 9.1 (Quasiisometrical homeomorphisms) Let A and B be

two subsets of Rn. A homeomorphism ϕ : A→ B is Q−quasiisometrical if

for any point x ∈ A there exists such a ball B(x, r) that

Q−1|y − z| ≤ |ϕ(y)− ϕ(z)| ≤ Q|y − z| (9.54)

for any y, z ∈ B(x, r) ∩ A. Here the constant Q > 0 does not depends on

the choice of x ∈ A, but the radius r may depend on x.

Obviously the inverse homeomorphism ϕ−1 : A → B is also

Q-quasiisometrical. A homeomorphism ϕ : A → B is a quasiisometrical

homeomorphism if it is a Q-quaiisometrical one for some Q. Sets A and B

are quasiisometrically equivalent if there exists a quasiisometrical homeo-

morphism ϕ : A→ B.

Definition 9.2 (Lipschitz Manifolds) A setM ⊂ Rn is anm-dimensional

Q-lipschitz manifold if for any point a ∈M there exists aQ-quasiisometrical

homeomorphism ϕa : B(0, 1) → Rn such that ϕ(0) = a and ϕ(B(0, 1) ∩
Rm) ⊂M . Here Rm := {x ∈ Rn : xm+1 = ... = xn = 0}.
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We are interested in compact lipschitz manifolds that are boundaries of

domains in Rn and/or in (n − 1)-dimensional lipschitz manifolds that are

dense subsets of boundaries in the sense of (n − 1)-dimensional Hausdorff

measure Hn−1.

Definition 9.3 (Class L) We call a bounded domain U ⊂ Rn a domain

of class L if:

1. There exist a bounded smooth domain V ⊂ Rn and a quasiisometrical

homeomorphism ϕ : V → U ;

2. The boundary ∂U of U is a (n− 1)-dimensional lipschitz manifold.

The following proposition is well known and will be useful for a study of

domains of class L and boundary behavior of quasisisometrical homeomor-

phisms.

Proposition 9.1 Let A and B be two subsets of Rn. A homeomorphism

ϕ : A → B is Q−quasiisometrical if and only if for any point a ∈ A the

following inequality holds:

Q−1 ≤ lim inf
x→a,x∈A

|ϕ(x) − ϕ(a)|
|x− a| ≤ lim sup

x→a,x∈A

|ϕ(x) − ϕ(a)|
|x− a| ≤ Q.

Here the constant Q > 0 does not depend on the choice of a ∈ U .

This proposition is a motivation for the following definition.

Definition 9.4 (Quasilipschitz mappings) Let A be a set in Rn. A map-

ping ϕ : A→ Rm is Q−quasilipshitz if for any a ∈ A one has:

lim sup
x→a,x∈A

|ϕ(x) − ϕ(a)|
|x− a| ≤ Q

Here the constant Q > 0 does not depend on the choice of a ∈ A.

A mapping is quasilipschitz if it is Q-quasilipschitz for some Q.

A homeomorphism ϕ : A→ B is a quasiisometrical homeomorphism iff

ϕ and ϕ−1 are quasilipschitz.

By definition any quasilipschitz mapping is a locally lipschitz one.

A restriction of a Q-quasilipshitz mapping on any subset B ⊂ A is a

quasilipschitz mapping also.

9.4.2 Interior metric and boundary metrics

Suppose A is a linearly connected set in Rn. An interior metric μA on A

can be defined by the following way:
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Definition 9.5 For any x, y ⊂ A

μA(x, y) = inf
γx,y

l(γx,y),

where γx,y : [0, 1] → A, γx,y(0) = x, γx,y(1) = y is a rectifiable curve and

l(γx,y) is length of γx,y.

As follows from Definition 9.4 a Q-quasilipschitz mapping can change the

length of a rectifiable curve by a factor Q at most. Hence a Q-quasilipschitz

mapping ϕ : A→ B of a linearly connected set A onto a linearly connected

set B is a lipschitz mapping of the metric space (A, μA) onto the metric

space (B, μB). Any Q-quasiisometrical homeomorphism ϕ : A → B is

a bilipschitz homeomorphism of the metric space (A, μA) onto the metric

space (B, μB).

Because any domain U of the class L is quasiisometrically equivalent

to a smooth bounded domain and for a smooth bounded domain the inte-

rior metric is equivalent to the Euclidian metric, the interior metric μU is

equivalent to the Euclidian metric for the domain U also. It means that

for any domain U ∈ L

K−1 |x− y| ≤ μU (x, y) ≤ K |x− y|
for any x, y ∈ U . Here a positive constant K does not depend on the

choice of the points x, y. Therefore for any bounded domain U ∈ L any

quasilipshitz mapping ϕ : U → V is a lipschitz mapping ϕ : (U, μU ) → Rm

for the interior metric.

We will use the following definition of locally connected domain U ∈ Rn

that is equivalent to the standard one.

Definition 9.6 Suppose (xk ∈ U), (yk ∈ U) are two arbitrary convergent

sequences such that lim infk→∞ μU (xk, yk) > 0. Call a domain U ∈ Rn

locally connected if for any such sequences one has limk→∞ xk �= limk→∞ yk

If a boundary of a bounded domain is a topological manifold then this

domain is locally connected. Therefore, domains of the class L are

locally connected domains because their boundaries are compact lipschitz

manifolds.

Definition 9.7 Let A be a closed linearly connected subset of Rn and

Hn−1(A) > 0. Call the interior metric μA a quasieuclidean metric almost

everwhere if there exists a closed set Q ⊂ A with Hn−1(Q) = 0, such that

for any point x ∈ A \Q the following condition holds:
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There exists such ball B(x, r) that for any y, z ∈ B(x, r)

1

K
|y − z| ≤ μA(y, z) ≤ K|y − z|,

where K = const > 0 does not depends on choice y, z and x.

By definition of lipschitz manifolds any domain of the class L is quasieu-

clidean at any boundary point.

Definition 9.8 Suppose U is a domain in Rn and x0, y0 ∈ ∂U . Let us

call the following quantity

μ̃∂U (x0, y0) := lim
ε→0

inf
|x−x0|<ε,|y−y0|<ε

μU (x, y)

relative interior boundary metric.

Because boundary of any domain U of the class L is a compact lipschitz

manifold, the relative interior boundary metric on ∂U is equivalent to the

interior boundary metric on ∂U for such domains. This motivates the

following definition:

Definition 9.9 A bounded domain U ⊂ Rn has an almost quasiisomet-

rical boundary if Hn−1(∂U) <∞ and there exists a closed set A ∈ ∂U with

Hn−1(A) = 0 such that for any point x0 ∈ ∂U \ A the following condition

holds:

There exists a ball B(x0, r), B(x0, r) ∩ A = ∅, such that for any x, y ∈
∂U ∩B(x0, r) one has:

1

K
μ∂U (x, y) ≤ μ̃∂U (x, y) ≤ Kμ∂U (x, y),

where K = const > 0 does not depend on the choice of x0, x and y.

We will use for the two-sided inequalities similar to the above one the

following short notation μ̃∂U (x, y) ∼ μ∂U (x, y).

If a domain U has an almost quasiisometric boundary ∂U and this

boundary is locally almost quasieuclidian then μ∂U (x, y) ∼ |x− y| for any
x, y ∈ ∂U .

Definition 9.10 We call a bounded domain U ⊂ Rn an almost quasi-

isometrical domain if Hn−1(∂U) < ∞ and there exists such a closed set

A ∈ ∂U , with Hn−1(A) = 0, that the following condition holds:

There exists a ball B(x0, r)∩A = ∅ such that for any x, y ∈ ∂U∩B(x0, r)

one has:

μ∂U (x, y) ∼ μ̃∂U (x, y) ∼ |x− y| .
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By the extension theorem for lipschitz mappings any quasiisometrical home-

omorphism ϕ of a smooth bounded domain in Rn onto a domain V in Rn

has a lipschitz extension ψ̃ onto Rn. Denote by ψ the restriction of a

lipschitz extension ψ̃ on ∂U . By continuity, the extension ψ is unique.

Definition 9.11 Let U be a smooth domain in Rn and V be a domain

in Rn such that Hn−1(∂V ) < ∞. A quasiisometrical homeomorphism

ϕ : U → V has N−1-property on the boundary if for any A ∈ ∂V with

Hn−1(A) = 0 one has Hn−1(ψ−1(A)) = 0.

The definition makes sense because the extension ψ of a quasiisometrical

homeomorphism ϕ on ∂U is unique.

Definition 9.12 (Class QI) Let us call a bounded domain V a domain

of class QI if:

1) There exists a quasisiometrical homeomorphism ϕ : U → V of a

smooth bounded domain U onto the domain V that has the N−1-property

on the boundary.

2) there exists such a closed set A ∈ ∂V , Hn−1(A) = 0, that ∂V \ A is

a Q-lipschitz manifold for some Q;

3) V is a locally connected almost quasiisometrical domain.

Remark 9.7 The class L is a subclass of the class QI.

9.4.3 Boundary behavior of quasiisometrical

homeomorphisms

Proposition 9.2 Suppose a Q-quasiisometrical homeomorphism ϕ : U →
V maps a smooth bounded domain U onto a locally connected domain V .

Then there exists an extension ψ of ϕ on ∂U such that ψ(∂U) = ∂V and

the mapping ψ|∂U is a lipshitz mapping of multiplicity one.

Proof. Because U is a smooth domain, ϕ is a lipschitz mapping. By the

extension theorem for lipschitz mappings there exists a Q-lipschitz exten-

sion ψ̃ : Rn → Rn of ϕ. This extension is not necessarily a quasiisometrical

homeomorphism. By continuity of ψ̃ and because ϕ : U → V is a homeo-

morphism we have ψ̃(∂U) = ∂V .

Suppose ψ := ϕ̃|∂U has multiplicity more than one. Then there exist two

different points x0, y0 ∈ ∂U , x0 �= y0 such that ψ(x0) = ψ(y0). Choose two

sequences: xk ∈ U and yk ∈ U such that limk→∞ xk = x0, limk→∞ yk = y0.

Because U is a smooth bounded domain the interior metric μU is equivalent

to the Euclidean metric, i.e. there exists a positive constant Q such that
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μU (xk, yk) ≥ Q−1 |xk − yk| ≥ Q−1 |x0 − y0| > 0 for all sufficiently large

k. The homeomorphism ϕ : (U, μU ) → (V, μV ) is a bi-lipschitz homeomor-

phism. Therefore lim infk→∞ μV (ϕ(xk), ϕ(yk)) > 0. Because U is a locally

connected domain ψ(x0) = limk→∞ ϕ(xk) �= limk→∞ ϕ(yk) = ψ(y0). This

contradiction proves the Proposition. �

For any lipschitz m-dimensional compact manifold M ⊂ Rn and for any

lipschitz mapping ϕ : M → Rn the set ϕ(M) is Hm-measurable for the

m-dimensional Hausdorff measure Hm and Hm(ϕ(M)) <∞.

The next theorem, dealing with area formulas, is a particular case of

the result proved in [3] and used for domains of the class QI.

Let us start with an abstract version of this theorem.

Definition 9.13 Call a metric space X a Hk-rectifiable metric space if

there exists such finite or countable set of lipschitz mappings αi : Ai → X

of mesurable sets Ai ⊂ Rk into X that Hk(X \⋃j αi(Ai)) = 0.

By the definition of the class QI a boundary ∂U of any domain U ∈ QI

is a Hn−1-rectifiable metric space.

Our next definition represents an abstract version of Jacobian for Hk-

rectifiable metric spaces.

Definition 9.14 Let X and Y be Hk-rectifiable complete metric spaces

and F : X → Y be a lipschitz mapping. Call the quantity

J(x, F ) := lim
r→0

Hk(F (B(x, r))

Hk(B(x, r))

a formal Jacobian of F at a point x.

Theorem 9.5 Suppose X and Y are Hk-rectifiable complete metric

spaces and F : X → Y is a lipschitz mapping of multiplicity one.

Then

1. Formal Jacobian J(x, F ) exists Hk−almost everywhere;

2. The following area formula holds:
∫
X

J(x, F )dHk =

∫
F (X)

dHk;

3. For any u ∈ L1(Y )

∫
X

u(F (x))J(x, F )dHk =

∫
F (X)

u(y)dHK .
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Corollary 9.1 If a domain V belongs to the class QI, and ϕ : V → U is

a Q-quasiisometrical homeomorphism, then Hn−1(∂U) <∞.

Proof. Any Q-quasiisometrical homeomorphism ϕ : V → U of a smooth

domain V ∈ Rn onto a domain U of the class QI has a lipschitz extension

ψ̃ : Rn → Rn. By definition of the class QI the domain V is a locally

connected domain. Hence by Proposition 9.2 the Q-lipschitz mapping ψ :=

ψ̃ \ ∂V has multiplicity one and ψ(∂V ) = ∂U . By Theorem 9.5 one gets

Hn−1(∂U) <∞. �

9.5 Quasiisometrical Homeomorphisms and Embedding

Operators

By Corollary 9.1, Hn−1(∂V ) < ∞ for any domain V ∈ QI. Therefore we

can define Banach space L2(∂V ) using the Hausdorff measure Hn−1.

Proposition 9.3 Let U be a smooth domain and V ∈ QI. Any Q-

quasiisometrical homeomorphism ϕ : U → V that has N−1property on the

boundary induces a bounded composition operator ψ∗ : L2(∂V ) → L2(∂U)

by the rule ψ∗(u) = u ◦ ψ.
Proof. Denote by m the (n − 1)-dimensional Lebesgue measure on ∂U

and by ψ the extension of φ onto ∂U . By Theorem 9.5 for any u ∈ L2(∂V )

∫
∂U

|u(ψ(x))|2 J(x, ψ)dm =

∫
∂V

|u(y)|2 dHm.

Suppose that there exists such a constant K > 0 that J(x, ψ) ≥ K−1

for almost all x ∈ ∂U . Denote by A ∈ ∂U , with Hn−1(A) = 0, a set of all

points for which the previous inequality does not hold. Then

‖ψ∗u‖2L2(∂U) =

∫
∂U\A

|u(ψ(x))|2 dHn−1

=

∫
∂U\A

|u(ψ(x))|2 J(x, ψ)
J(x, ψ)

dHn−1

≤ K

∫
∂V \ψ−1(A)

|u(ψ(x))|2 J(x, ψ)dm = K ‖u‖2L2(∂V ) .

The last equality is valid because ϕ has the N−1-property on the bound-

ary, i.e. m(ψ−1(A)) = 0. Therefore ψ∗ : L2(∂V ) → L2(∂U) is a bounded

operator and ‖ψ∗‖ ≤ K.
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To finish the proof we have to demonstrate that J(x, ψ) ≥ K−1.

Remember that any domain of the class QI has an almost quasiisomet-

ric boundary.

It means that we can choose such a closed subset A ⊂ ∂V , with

Hn−1(A) = 0, that the following property holds:

For any x0 ∈ ∂V \A there exists such a ball B(x0, r) ∩ A = ∅ that:

1) B(x0, r) ∩ A = ∅ and μ̃∂V (x, y) ∼ μ∂V (x, y) ∼ |x − y| for any x, y ∈
∂V ∩B(x0, r),

2) B(x0, r) ∩ ∂V is a lipschitz manifold.

Let B := ψ−1(A). Choose a point z0 ∈ ∂U \ B and such a ball

B(z0, R) that relations μ̃∂U (x, y) ∼ μ∂U (x, y) ∼ |x − y| hold for any

x, y ∈ ψ(B(z0, R)) ∩ ∂U . This is possible because U is a smooth domain.

Because ϕ is a Q-quasiisometric, the length |γ| of any curve γ ⊂ V

satisfies the estimate:

1

Q
|ϕ(γ)| ≤ |γ| ≤ Q|ϕ(γ)|

where |ϕ(γ)| is the length of the curve ϕ(γ) ∈ U . In terms of the relative

interior metric μ̃∂U it means that

Bμ̃∂U
(x0,

1

Q
R) ⊂ ψ(B(z0, R) ∩ ∂V ⊂ Bμ̃∂U

(x0, QR)

where x0 = ψ(z0). Without loss of generality we can suppose that

μ̃∂U (x, y) ∼ μ∂U (x, y) ∼ |x − y| for any x, y ∈ Bμ̃∂U
(x0, QR). Finally

we obtain

B(x0,
1

K
R) ⊂ ψ(B(z0, R) ∩ ∂V ⊂ B(x0,KR) (9.55)

for some constant K that depends only on Q and constants in relations

μ̃∂U (x, y) ∼ μ∂U (x, y) ∼ |x− y|.
We have proved the inequality Jψ(x) ≥ K−1 almost everywhere on ∂U .

�

9.5.1 Compact embedding operators for rough domains

It is well known that the embedding operator H1(Ω) → L2(∂Ω) is compact

for bounded smooth domains.

We will prove compactness of the embedding operator for the class QI.

Then we extend the embedding theorem to the domains that are finite

unions of the QI-domains. Our proof is based on the following result: a
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quasiisometrical homeomorphism ϕ : U → V induces a bounded compo-

sition operator ϕ∗ : H1(V ) → H1(U) by the rule ϕ∗(u) = u ◦ ϕ (see, for

example [32] or [165]).

Definition 9.15 A domain U is a domain of class Q if it is a finite union

of elementary domains of class QI.

Let us use the following result:

Theorem 9.6 (see for example [32] or [165]) Let U and V be domains

in Rn. A quasiisometrical homeomorphism ϕ : U → V induces a bounded

composition operator ϕ∗ : H1(V ) ⇒ H1(U) by the rule ϕ∗(u) = u ◦ ϕ.
Combining this Theorem with Theorem 9.3, one gets:

Theorem 9.7 If U is a domain of the class QI, then the embedding

operator iU : H1(U) → L2(∂U) is compact.

Proof. By definition of the class QI there exist a smooth bounded

domain V and a quasiisometrical homemorphism ϕ : V → U . By Proposi-

tion 9.3 ϕ induces a bounded composition operator ψ∗ : L2(∂U) → L2(∂V )

by the rule ψ∗(u) = u ◦ ψ. Because the embedding operator iU : H1(U) →
L2(∂U) is compact and the composition operator(ϕ−1)∗ : H1(V ) → H1(U),

induced by quasiisometrical homeomorphism ϕ, is bounded the embedding

operator iV : H1(V ) → L2(∂V ), iU = (ϕ−1)∗ ◦ iV ◦ (ϕ)∗ is compact. �

To apply this result for domains of the class Q we need the following

lemma:

Lemma 9.2 If U and V are domains of the class QI, then the embedding

operator H1(U ∪ V ) → L2(∂(U ∪ V )) is compact.

Proof. By previous proposition operators iU : H1(U) → L2(∂U) and

iV : H1(V ) → L2(∂V ) are compact. Choose a sequence {wn} ⊂ H1(U∪V ),

‖wn‖H1(U∪V ) ≤ 1 for all n. Let un := wn|∂U and vn := wn|∂V . Then

un ∈ L2(∂U) , vn ∈ L2(∂V ), ‖un‖L2(∂U) ≤ ‖iU‖, ‖vn‖L2(∂V ) ≤ ‖iV ‖.
Because the embedding operator H1(U) → L2(∂U) is compact, we

can choose a subsequence {unk
} of the sequence {un} which converges

in L2(∂U) to a function u0 ∈ L2(∂U). Because the embedding operator

H1(V ) → L2(∂V ) is also compact we can choose a subsequence {vnkm
} of

the sequence {vnk
} which converges in L2(∂V ) to a function v0 ∈ L2(∂V ).

One has: u0 = v0 almost everywhere in ∂U ∩ ∂V and the function w0(x)

which is defined as w0(x) := u0(x) on ∂U ∩ ∂(U ∪ V ) and w0(x) := v0(x)

on ∂V ∩ ∂(U ∪ V ) belongs to L2(∂(U ∪ V )).
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Hence

‖wnkm
− w0‖L2(∂(U∪V )) ≤ ‖unkm

− u0‖L2(∂U) + ‖vnkm
− v0‖L2(∂V ).

Therefore ‖wnkm
− w0‖L2(∂(U∪V )) → 0 for m→ ∞ . �

From Theorem 9.7 and Lemma 9.2 the main result of this section follows

immediately:

Theorem 9.8 If a domain Ω belongs to class Q then the embedding

operator H1(Ω) → L2(∂Ω) is compact.

Proof. Let U be an elementary domain of class Q. By Theorem 9.7 the

embedding operator iU : H1(U) → L2(∂U) is compact.

Because any domain V of class Q is a finite union of domains of class

QI the result follows from Lemma 9.2. �

9.5.2 Examples

Example 5.7 shows that a domain of the class Q can have unfinite number

of connected boundary components.

Example 9.1 Take two domains:

1. Let domain U is a union of rectangles Pk := {(x1, x2) :
∣∣x1 − 2−k

∣∣ <
2−k−2; 0 ≤ x2 < 2−k−2}, k = 1, 2, ... and the square S := (0, 1)× (−1, 0);

2. V := {(x1, x2) : 0 < x1 < 1; 10−1x1 ≤ x2 < 1}.
In the book [65] it was proved that U is a domain of the class L. It is

obvious that V is also a domain of the class L. Therefore Ω = U ∪ V is

a domain of class Q. By Theorem 9.8 the embedding operator H1(Ω) ⇒
L2(∂Ω) is compact.

The boundary ∂Ω of the plane domain Ω contains countably many con-

nected components that are boundaries of domains

Sk := {(x1, x2) :
∣∣x1 − 2−k

∣∣ < 2−k−2; 10−1x1 ≤ x2 < 2−k−2}.
The boundary of the rectangle S0 := {(x1, x2) : 0 < x1 < 1;−1 ≤ x2 < 1}
is also a large connected component of ∂Ω.

Any neighboorhood of the point {0, 0} contains countably many con-

nected components of ∂Ω and therefore can not be represented as a graph

of any continuous function.

Higher-dimensional examples can be constructed using the rotation of the

plane domain Ω around x1-axis.
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Next, we show that the class QI contains simply-connected domains

with non-trivial singularities.

Let us describe first a construction of a new quasiisometrical homeo-

morphism using a given one. Suppose that Sk(x) = kx is a similarity

transformation (which is called below a similarity) of Rn with the similar-

ity coefficient k > 0, Sk1(x) = k1x is another similarity and ϕ : U → V is a

Q−quasiisometrical homeomorphism. Then a composition ψ := Sk ◦ϕ◦Sk1
is a k1kQ -quasiisometrical homeomorphism.

This remark was used in [30] for construction of an example of a domain

with “spiral” boundary which is quasiisometrically equivalent to a cube. At

“the spiral vertex” the boundary of the “spiral” domain is not a graph of

any lipschitz function. Here we will show that the “spiral” domain belongs

to the class QI. Let us recall the example from [30].

Example 9.2 We can start with the triangle T := {(s, t) : 0 < s <

1, s < t < 2s} because T is quasiisometrically equivalent to the unit square

Q2 = (0, 1) × (0, 1). Hence we need to construct only a quasiisometrical

homeomorphism ϕ0 from T into R2.

Let (ρ, θ) be polar coordinates in the plane. Define first a mapping

ϕ : R2
+ → R2 as follows: ϕ(s, t) = (ρ(s, t), θ(s, t)), ρ(s, t) = s , θ(s, t) =

2π ln t
s2 . Here R2

+ := {(s, t)|0 < s < ∞, 0 < t < ∞}. An inverse mapping

can be calculated easily: ϕ−1(ρ, θ) = (s(ρ, θ), t(ρ, θ)), s(ρ, θ) = ρ, t(ρ, θ)) =

ρ2e
θ
2π . Therefore ϕ and ϕ0 := ϕ|T are diffeomorphisms.

The image of the ray t = ks, s > 0, k > 0, is the logarithmic spiral

ρ = k exp(− θ
2π ). Hence the image S := ϕ(T ) = ϕ0(T ) is an “elementary

spiral” plane domain, because ∂T is a union of two logarithmic spirals

ρ = exp(− θ
2π ), ρ = 2 exp(− θ

2π ) and the segment of the circle ρ = 1 .

The domain T is a union of countably many subdomains Tn := {(s, t) :
e−(n+1) < s < e−(n−1), s < t < 2s}, n = 1, 2, ... . On the first domain T1
the diffeomorphism ϕ1 := ϕ|T1 is Q−quasiisometrical, because ϕ1 is the

restriction on T1 of a diffeomorphism ϕ defined in R2
+ and T1 ⊂ R2

+. We

do not calculate the number Q.

In [30] it was proven that any diffeomorphism ϕn := ϕ|Tn that is the

composition ϕn = Se−(n−1) ◦ ϕ1 ◦ Sen−1 of similarities Se−(n−1) , Sen−1 and

the Q−quasiisometrical diffeomorphism ϕ1 is Q−quasiisometrical. There-

fore the diffeomorphism ϕ0 is also Q−quasiisometrical, and the “elemen-

tary spiral” domain U = ϕ0(T ) is quasiisometrically equivalent to the unit

square.
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By construction, the boundary of the domain U := ϕ(T ) is smooth at any

point except the point {0}. This domain is a locally connected domain.

The quasiisometrical homeomorphism ϕ has N−1 property because all the

homeomorphisms ϕn have this property. Except the point {0} the boundary
∂U is aQ-lipschitz manifold. All other properties ofQI-domains are subject

of simple direct calculations. Therefore the domain T is a QI-domain.

9.6 Conclusions

In this section we combine the results about elliptic boundary-value prob-

lems with these about embedding operators.

The first result is a formulation of Theorem 9.3 for a large concrete

class of rough domains. This result follows immediately from Theorem 9.3,

Theorem 3.11 from [30] and Theorem 9.8.

Theorem 9.9 If D is a domain of the class Q, F ∈ L2
0(D), and h ≥ 0 is

a piecewise-continuous bounded function on ∂D, h �≡ 0, then problem (9.9)

has a solution in H1(D), this solution is unique, and the problem

[u, φ] +

∫
∂D

huφ̄ds− λ(u, φ) = (F, φ), λ = const ∈ R

is of Fredholm type.

The next result is a formulation of Theorem 9.4 for a large class of rough

exterior domains D′.
Fix a bounded domain D̃ ⊂ D′ whose boundary consists of two parts

∂D and a smooth compact manifold S. Assume that D̃ belongs to the class

Q. By the definition of the class Q, this assumption holds for any choice of

D̃ because for the smooth component S the conditions defining the class Q

hold.

Theorem 9.4, Theorem 3.11 from [30], and Theorem 9.8 imply the fol-

lowing result:

Theorem 9.10 For any F ∈ L2
0, each of the boundary-value problems:

Aiu = F, i = D,N or R, Aiu = −Δu, (9.56)

has a solution u = limε↓0(A − iε)−1F := (A − i0)−1F , u ∈ H2
loc(D

′),
u ∈ L2,a, a ∈ (1, 2), and this solution is unique.



Chapter 10

Low Frequency Asymptotics

10.1 Introduction

In this chapter the exterior domain D′ = De is denoted by Ω. The material

presented in this chapter is taken mainly from [90], [120], and the presen-

tation follows closely [120].

Let us consider the behavior of the solution to the problems

(∇2 + k2
)
u = 0 in Ω ⊂ R

n, n ≥ 2, k = const > 0 (10.1)

u = f on Γ, f ∈ H1(Γ) (10.2)

where u for k > 0 always satisfies the radiation condition, D is a bounded

domain with Liapunov’s boundary (this means that Γ ∈ C1,λ, λ > 0). We

are also interested in the boundary conditions

uN = f on Γ (10.3)

and

uN + η(s)u = f on Γ (10.4)

where N is the unit normal on Γ pointing into Ω. The case when Lu =

∂i[aij(x)∂ju] stands in place of ∇2 can be treated as well, provided that

aij ∈ C1, aij(x) = δij for |x| sufficiently large, and the matrix aij(x)

satisfies the ellipticity condition c1ti t̄i ≤ aijti t̄j ≤ c2tit̄i, c1 and c2 are

positive constants, the bar stands for complex conjugate and over repeated

indices one sums up. The function η(s) ∈ C(Γ) is assumed to satisfy

conditions

Im η(s) ≥ 0; if Im η = 0 then η ≤ 0 (10.5)

161



162 Low Frequency Asymptotics

Assumption (10.5) implies uniqueness of the solution to problem (10.1),

(10.4). If equation (10.1) would be nonhomogeneous, say

(∇2 + k2
)
u = F (10.6)

then one can consider

v = u+

∫
Rn

g(x, y, k)F (y)dy (10.7)

where

(∇2 + k2
)
g = −δ(x− y) in R

n, g satisfies the radiation condition (10.8)

and for v one obtains the above problems with the homogeneous equation

(10.1).

We want to describe some methods to study the behavior as k → 0

of the solutions to equation (10.1) satisfying one of the conditions (10.2),

(10.3) or (10.4). Note that the limit u(x, k) as k → 0 does not always exist.

This will be clear from our results. To make it transparent without going

into detail, let us consider problem (10.1), (10.3) in R
2.

Suppose that the solution of this problem has a limit in H2
loc(Ω),

u(x, k) −→
H2

loc(Ω)
u0(x) as k → 0. (10.9)

Then

∇2u0 = 0 in Ω, u0N = f on Γ. (10.10)

By Green’s formula one has

u(x, k) =

∫
Γ

(ugN−gf)ds=
∫
Γ

(u0g0N−g0f)ds+α(k)
∫
Γ

fds+o(1) as k → 0,

(10.11)

where α(k) = [ln( 2k )−γ]/2π+i/4 and γ = 0.5572 · · · is the Euler’s constant,
g(x, y, k) = α(k) + g0(x, y) +O

(
k2 ln k

)
as k → 0,

g0(x, t) = (2π)−1 ln r−1
xy , rxy = |x− y|. (10.12)

The estimate O(k2 ln k) holds uniformly in x, y in the region 0 < c1 ≤
|x− y| ≤ c2, where cj , j = 1, 2, are constants. Therefore (10.9) cannot hold

unless ∫
Γ

f ds = 0. (10.13)
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It is also clear from (10.11) that if (10.13) holds then (10.9) holds and u0
solves (10.10) and satisfies the condition

u0(x) = O(|x|−1) as |x| → ∞. (10.14)

Indeed, if (10.13) holds then

u0(x) =

∫
Γ

[
u0(s)g0N (x, s)− g0(x, s)f(s)

]
ds = O

(|x|−1
)
as |x| → ∞

(10.15)

since g0N(x, s) = O(|x|−1) and

∫
Γ

g0(x, s)f(s) =
1

2π
ln |x|−1

∫
Γ

f(s) +O(|x|−1) = O(|x|−1). (10.16)

We give several approaches to the problem of low frequency asymp-

totics of the solutions to the exterior problem. The first approach is based

on integral equations of the first kind. It provides a detailed information

and allows one to obtain asymptotic expansion of the solution as k → 0.

Its drawback is that it works efficiently for the equation with constant co-

efficients for which the behavior of the Green function as k → 0 is known in

detail. The second approach is rather general. It gives a convenient neces-

sary and sufficient condition for the limit (10.9) to exist, but it does not give

(at least without extra work) the rate of convergence. The third approach

is based on a priori estimates and uses the fact that for sufficiently small

k equation (10.1) in a bounded domain satisfies the maximum principle.

The first two approaches belong to the author [90], [133], [120], the third

one is due to [160]. Section 10.7 is based on the works [137], [138], and the

presentation follows [138].

Let us describe these approaches. The results obtained by the integral

equation method give necessary and sufficient conditions for the existence

of the limit (10.9) and the asymptotics of the solution as k → 0.

A discussion of low-frequency scattering is given in [19].

10.2 Integral Equation Method for the Dirichlet Problem

Let us look for the solution to (10.11), (10.12) of the form

u =

∫
Γ

g(x, s, k)σ(s)ds := Q(k)σ. (10.17)
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Consider the case n ≥ 3 first. The method is valid in R
n for n ≥ 2, but

the results for n = 2 are sometimes different because the Green’s function

g(x, k) = i
4H

(1)
0 (k|x|) does not have a finite limit as k → 0.

Let us take n = 3. The case n > 3 is treated similarly. If n = 3 then

g = (4π|x|)−1 exp(ik|x|) and (10.17) solves (10.1). To satisfy (10.2) choose

σ as the solution to the equation

Q(k)σ = f. (10.18)

It is known [133, p. 199], that Q : H0(Γ) → H1(Γ) is an isomorphism if

k > 0 is sufficiently small (so that k2 is not a Dirichlet eigenvalue of −∇2

in D). Therefore

σ = Q−1(k)f. (10.19)

The operator Q(k) depends on k analytically and Q−1(k) is analytic in k

in a sufficiently small neighborhood of k = 0. Indeed, Q(k) := Q0 + B(k),

Q0 := Q(0), ‖B(k)‖H0(Γ)→H1(Γ) ≤ c|k|, Q0 is an isomorphism of H0(Γ)

onto H1(Γ). Therefore

Q−1(k) =
[
Q0 +B(k)

]−1
=
[
I +Q−1

0 B(k)
]−1

Q−1
0 . (10.20)

The operator Q−1
0 B(k) is analytic in k as an operator in H0(Γ) and

‖Q−1
0 B(k)‖H0(Γ)→H1(Γ) → 0 as |k| → 0. Therefore Q−1(k) is an isomor-

phism of H1(Γ) onto H0(Γ) which is analytic in k in a sufficiently small

neighborhood of k = 0. This implies that σ defined by (10.19) is analytic

in k, in particular:

σ(s, k)−→
H

σ0(s) as k → 0, σ0 = Q−1
0 f ∈ H0(Γ). (10.21)

Thus we have

Theorem 10.1 For any f ∈ H1(Γ) the limit (10.9) exists and

u0(x) =

∫
Γ

g0(x, s)σ0(s)ds, σ0(s) = Q−1
0 f (10.22)

solves the limiting problem

∇2u0 = 0 in Ω, u0 = f on Γ, u(∞) = 0. (10.23)

One has

u(x, k) = u0(x) + u1(x, k),
∣∣u1(x, k)∣∣ = O(k) as k → 0 (10.24)
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and the term u1(x, k) can be calculated:

u1(x, k) = ik

∫
Γ

(g1σ0 + g0σ1) ds+O(k2) as k → 0, (10.25)

where g1 and σ1 are defined by the formula

σ(s, k) = σ0(x) + ikσ1(s) + o(k),

g(x, k) = g0(x) + ikg1(x) + o(k), k → ∞,
(10.26)

so that

g1(x) =
1

4π
, σ1(s) = − 1

4π
Q−1

0

∫
Γ

Q−1
0 f ds. (10.27)

Proof. We have already proved all but the second formula (10.27). To

prove this formula, one calculates B(k) explicitly:

B(k)f = [Q(k)−Q(0)]f =
ik

4π

∫
Γ

f ds+O
(
k2
)
as k → 0. (10.28)

From (10.20) and (10.19) one gets

σ = Q−1
0 f −Q−1

0 B(k)Q−1
0 f + · · · . (10.29)

From (10.28) and (10.29) the second formula (10.26) follows. Theorem 10.1

is proved. �

Consider now the case n = 2. There are some new features in this case:

Green’s function g = i
4H

(1)
0 (krxy) does not have a finite limit as k → 0, the

operator Q0 may have for some domains a nontrivial null-space N(Q0) so

that Q−1
0 does not exist for these domains. By N(A) = {u : Au = 0} we

denote the null space of an operator A.

Lemma 10.1 There exist Ω ⊂ R
2 such that N(Q0) 
= {0}. If N(Q0) 
=

{0} then dimN(Q0) = 1 and one can choose φ ∈ N(Q0) so that φ ≥ 0.

Proof. Let us prove that a disc D of a suitable radius a will have a non-

trivial null-space N(Q0) 
= {0}. The integral equation Q0φ = 0 for the disc

of radius a can be written as

− 1

2π

∫ 2π

0

ln
[
2a2 − 2a2 cos(α− β)

]1/2
φ(β)dβ = 0

or

− 1

4π
ln(2a2)

∫ 2π

0

φ(β)dβ − 1

4π

∫ 2π

0

ln

(
sin2

α− β

2

)
φ(β)dβ = 0
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or

Bφ : = ν(a)

∫ 2π

0

φ(β)dβ − 1

2π

∫ 2π

0

∣∣∣ sin α− β

2

∣∣∣φ(β)dβ = 0,

ν(a) : = − 1

2π
ln(2a).

(10.30)

Note that ν(a) → +∞ as a → 0, ν(a) → −∞ as a → ∞. Since B is a

compact in L2(0, 2π) selfadjoint operator its spectrum is discrete. From

the variational definition of the eigenvalues λj(B) of B it follows that there

exists an a such that λj(B) = 0 for some j. More explicitly, take φ(β) = 1,

then (10.30) reduces to

− ln(2a)− 1

2π

∫ 2π

0

∣∣∣∣sin α− β

2

∣∣∣∣ dβ = 0. (10.31)

One has
∫ 2π

0
| sin α−β

2 |dβ = 2
∫ π−α

2
−α
2

| sin γ|dγ = 4, so that (10.31) becomes

− ln(2a) = 2/π. This equation holds for a = a0 = 1
2 exp(−2/π). Thus, if Ω

is the disc of radius a0 then N(Q0) 
= {0}, 1 ∈ N(Q0).

Let us prove the second statement of Lemma 10.1. The proof is valid

also in the case of Γ which hasm connected components. We assumem = 1

and leave the case m > 1 to the reader. We claim that if σ ∈ N(Q0), σ 
≡ 0,

then
∫
Γ
σdt 
= 0. Indeed, otherwise Q0σ = 0 and

∫
Γ
σdt = 0 imply σ ≡ 0.

To prove this, let w(x) :=
∫
Γ
g0(x, s)σ(s) ds, g0(x, s) =

1
2π ln |x− s|−1. One

has

w(x) =
1

2π

(
ln |x|−1

) ∫
Γ

σdt+ w1(x) (10.32)

where

∇2w1 = 0 in Ω, w1 = O(|x|−1), w1 = 0 on Γ. (10.33)

Thus w1 = 0 in Ω. If
∫
Γ σdt = 0 then w1 = w. Thus w = 0 in Ω. Also

∇2w = 0 in D, w = 0 on Γ, implies w = 0 in D. By the jump relation

σ = w+
N −w−

N = 0 where w+
N (w−

N ) denotes the limiting value of the normal

derivative of w on Γ from D (Ω). The claim is proved.

Suppose now that σj ∈ N(Q0), j = 1, 2, σj 
≡ 0. By the claim,
∫
Γ σjdt 
=

0, j = 1, 2. One can find a constant c such that
∫
Γ(σ1 − cσ2)dt = 0. Since

σ1 − cσ2 ∈ N(Q0) one concludes that σ1 = cσ2. Thus, dimN(Q0) = 1. Let

us finally prove that σ ∈ N(Q0) can be chosen so that σ ≥ 0. Choose σ 
≡ 0,

σ ∈ N(Q0), such that
∫
Γ
σdt > 0. This is possible (take −σ if

∫
Γ
σdt < 0).

We claim that if σ ∈ N(Q0) and
∫
Γ
σdt > 0 then σ ≥ 0. Indeed, formulas
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(10.32) and (10.33) show that w → −∞ as |x| → ∞. By the maximum

principle w(x) < 0 in Ω. Therefore wN ≤ 0. Since w(x) = 0 in D one has

w+
N = 0. Thus σ = w+

N − w−
N ≥ 0. In fact, in the case m = 1, the strong

maximum principle implies σ(s) > 0. Lemma 10.1 is proved. �

Let n = 2. Then the following result holds.

Theorem 10.2 For the solution to problem (10.1), (10.2) the limit (10.9)

exists and u0(x) solves the limiting problem

∇2u0 = 0 in Ω, u0 = f on Γ, |u(∞)| = O(1). (10.34)

Moreover

u0(x) = β +

∫
Γ

g0(x, t)σ0(t)dt, β = const, g0 =
1

2π
ln

1

rxt
(10.35)

where

σ0 = Q−1
0 (d)f − βQ−1

0 (d)1, d = const > diamD, (10.36)

and

Q0(d)f :=
1

2π

∫
Γ

ln
d

rst
f(t)dt. (10.37)

One has

u(x, k) = u0(x) +O(| ln k|−1) as k → 0. (10.38)

Proof. In contrast to the case n = 3, one can have domains in R
2 such

that Q0 is not invertible, where Q0f =
∫
Γ g0(s, t)f(t)dt. To avoid this

complication, choose d = const > diamD and define Q0(d) by formula

(10.37). Look for the solution to (10.1), (10.2) of the form

u =

∫
Γ

g(x, t)σ(t)dt = α1(k)(σ, 1) +
1

2π

∫
Γ

ln
d

rxt
σ(t)dt+ ε(k)σ (10.39)

where

α1(k) := α(k)− 1

2π
ln d, ‖ε(k)‖H0(Γ)→H1(Γ) ≤ c|k| as k → 0 (10.40)

and α(k) is defined below (10.11).

Note that Q0(d) is an isomorphism of H0(Γ) onto H1(Γ) if d > diamD.

Indeed, it is injective: if Q0(d)σ = 0 then Q0σ = − ln
2π (σ, 1). Since Q0

is symmetric, this equation is solvable only if the orthogonality condition

holds: − ln d
2π (σ, 1)(σ0, 1) = 0, where Q0σ0 = 0, (σ0, 1) 
= 0. Therefore
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(σ, 1) ln d = 0. If ln d 
= 0 then (σ, 1) = 0, Q0σ = 0, and this implies

σ = 0 by Lemma 10.1. If ln d = 0 then Q0σ = 0 and ln 1
rst

> 0, s, t ∈ Γ.

This implies σ = 0. Indeed, by Lemma 10.1 it is sufficient to prove that

(σ, 1) = 0. Suppose (σ, 1) > 0. Without loss of generality assume σ = 1+σ1,

(σ, 1) = 0. One has, if ln 1
rst

> 0, Q0σ1 = −Q01 < 0. Again, using the

orthogonality condition necessary for the solvability of the last equation,

one obtains (Q01, σ) = 0. Since σ ≥ 0 and Q01 > 0 it follows that σ = 0.

The inequality σ ≥ 0 is established as in Lemma 10.1. Let us now prove that

Q0(d) is surjective as an operator fromH0(Γ) intoH1(Γ). Take an arbitrary

f ∈ H1(Γ). Consider the equation Q0(d)σ = f . The operator Q0 with the

kernel − 1
2π ln |s− t| is an elliptic selfadjoint pseudodifferential operator in

H0(Γ) of order −1 with index 0, so that Q0(d), which differs from Q0 by

a rank-one operator, has index zero as well. Since N [Q0(d)] = {0} one

concludes that Q0(d) : H0(Γ) → H1(Γ) is surjective. It is now easy to

finish the proof of Theorem 10.2. Consider the equation (cf. (10.39)):

α1(k)(σ, 1) +Q0(d)σ + ε(k)σ = f. (10.41)

Write it as

σ + α1(k)(σ, 1)Q
−1
0 (d)1 +Q−1

0 (d)ε(k)σ = Q−1
0 (d)f. (10.42)

It follows from (10.42) that

(σ, 1)+α1(k)(σ, 1)(Q
−1
0 (d)1, 1)+(Q−1

0 (d)ε(k)σ, 1) = (Q−1
0 (d)f, 1). (10.43)

Thus

(σ, 1) =
(Q−1

0 (d)f, 1)− (Q−1
0 (d)ε(k)σ, 1)

1 + α1(k)(Q
−1
0 (d)1, 1)

. (10.44)

We have proved earlier that c0 := (Q−1
0 (d)1, 1) > 0. This and (10.40) imply

that

α1(k)(σ, 1) = β +O(|α−1
1 (k)|) as k → 0, β :=

(Q−1
0 (d)f, 1)

(Q−1
0 (d)1, 1)

. (10.45)

The equation

Tσ = h, Tσ := σ + α1(σ, 1)p, p := Q−1
0 (d)1 (10.46)

can be solved explicitly:

σ = h− α1p(h, 1)

1 + α1(p, 1)
, (p, 1) = c0 > 0. (10.47)



Integral Equation Method for the Neumann Problem 169

Thus

T−1 = I − α1p(·, 1)
1 + α1c0

= I − p

c0
(·, 1) +O(|α−1

1 |), k → 0. (10.48)

It follows from (10.42) that

[
I + T−1Q−1

0 (d)ε(k)
]
σ = T−1Q−1

0 (d)f. (10.49)

From (10.40), (10.48) and (10.49) it follows that

σ(k) = σ0 +O(| ln k|−1) as k → 0 (10.50)

where

σ0 = Q−1
0 (d)f − βQ−1

0 (d)1, (10.51)

and

(σ, 1) =
β

α1
+O(|α1|−2) as k → 0. (10.52)

Therefore by (10.39), (10.50)–(10.52),

u(x, k) = β +
1

2π

∫
Γ

ln
d

rxt
σ0(t)dt+O(|α1|−1) as k → 0, (10.53)

where σ0 is given by (10.51). It follows from (10.52) that

(σ0, 1) = 0. (10.54)

From (10.53), (10.54) and (10.51) formulas (10.35) and (10.36) follow. The-

orem 10.2 is proved. �

Remark 10.1 Equation (10.49) can be solved by iterations since the

norm of the operator T−1Q−1
0 (d)ε(k) in H1(Γ) goes to zero as k → 0.

Therefore this equation can be used for obtaining full asymptotic expansion

of σ(s, k) and, using formula (10.39), one can obtain asymptotics of u(x, k)

as k → 0.

10.3 Integral Equation Method for the Neumann Problem

The basic result of this section is:
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Theorem 10.3 The limit (10.9) holds for the solution to problem (10.1),

(10.3) in R
3 for any f ∈ L2(Γ). It holds in R

2 iff∫
Γ

fdt = 0. (10.55)

If (10.55) holds then the limit u0(x) solves the problem

∇2u0 = 0 in Ω, u0N = f on Γ, Ω ⊂ R
2,

u0(∞) = 0
(10.56)

Proof. First assume n = 3. Then Green’s formula yields for the solution

to (10.1), (10.3):

u(x) =

∫
Γ

(ugN − gf)dt,

g(x, t) =
exp(ik|x− t|)

4π|x− t| .

(10.57)

Taking x → s ∈ Γ, x ∈ Ω, and using the well known formulas for the

limiting values of the potential of double layer on Γ, one gets

σ =
A′σ + σ

2
−
∫
Γ

g(s, t)f(t)dt, σ := u
∣∣∣
Γ
,

A′σ := A′(k)σ := 2

∫
Γ

∂g(s, t)

∂Nt
σ(t)dt, s ∈ Γ

or

σ = A′σ − 2

∫
Γ

g(s, t)f(t)dt.

(10.58)

The operator I − A′(0) has a bounded inverse in L2(Γ) and ‖A′(k) −
A′(0)‖L2(Γ) → 0 as k → 0. Therefore ‖(I−A′(k))−1−(I−A′(0))−1‖L2(Γ) →
0 as k → 0. This and (10.58) imply that

‖σ(s, k)− σ0(s)‖ := δ(k) → 0 as k → 0. (10.59)

In fact δ(k) ≤ ck, c = const > 0. The function σ0(s) in (10.59) can be

calculated from (10.58):

σ0 = 2(I −A′(0))−1

∫
Γ

g(s, t)f(t)dt. (10.60)

From (10.59) and (10.57) one obtains(10.59). It is easy to check that

u0(x) = limk→0 u(x, k) solves (10.56). Theorem 10.3 is proved in the case

n = 3.
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If n = 2 the proof is basically the same. The role of condition (10.55) is

explained below formula (10.11), and, in fact, u0(x) = O(|x|−1) if (10.55)

holds, a refinement of (10.56). Theorem 10.3 is proved. �

10.4 Integral Equation Method for the Robin Problem

Consider now problem (10.1), (10.4), in Ω ⊂ R
2. This problem is uniquely

solvable under the assumptions (10.5) [133, p. 37]. Look for its solution of

the form

u =

∫
Γ

g(x, t)σ(t)dt, g =
i

4
H

(1)
0 (k|x− t|). (10.61)

The boundary condition (10.4) yields

A(k)σ − σ

2
+ η(s)Q(k)σ = f, (10.62)

where

A(k)σ := 2

∫
Γ

∂g(s, t)Nsσ(t)dt, Q(k)σ =

∫
Γ

g(s, t)σ(t)dt. (10.63)

Define A0 = A(0), Q0 = Q(0),

B =
A0 − I

2
+ η(s)Q0. (10.64)

Equation (10.62) can be written as

Bσ + α(k)η(s)(σ, 1) + ε(k)σ = f (10.65)

where α(k) is defined below (10.11) and ‖ε(k)‖L2(Γ)→L2(Γ) → 0 as k → 0.

Theorem 10.4 If N(B) = {0} and (B−1η, 1) 
= 0 then for the solution

to (10.1), (10.4) equation (10.9) holds. If N(B) 
= {0} and (10.5) holds

then dimN(B) = 1. Let (10.5) hold, h ∈ N(B), h 
≡ 0, then (ηQ0h, 1) 
= 0,

B′Q0h = 0, and for the solution to (10.1), (10.4) equation (10.9) holds.

Conversely, if for the solution (10.1), (10.4) equation (10.9) holds, then

either N(B) = {0} and (B−1η, 1) 
= 0, or dimN(B) = 1 and the equations

(ηQ0h, 1) 
= 0, B′Q0h = 0 hold. If dimN(B) > 1, then there exists an

f ∈ L2(Γ) for which (10.9) fails.

The proof of this theorem is given in a series of lemmas.
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Lemma 10.2 If N(B) = {0} then B is invertible and the condition

(B−1η, 1) 
= 0 (10.66)

is necessary and sufficient for (10.9) to hold for the solution to (10.1),

(10.4).

Proof. The operator B is of Fredholm type. Therefore N(B) = {0}
implies that B−1 is bounded and defined on all of the space L2(Γ). Equation

(10.65) can be written as

σ + α(k)cσB
−1η +B−1ε(k)σ = B−1f, cσ := (σ, 1). (10.67)

Integrate (10.67) over Γ to get

cσ[1 + α(k)(B−1η, 1)] + (B−1ε(k)σ, 1) = (B−1f, 1). (10.68)

If (10.66) holds then one obtains from (10.68), as in the proof of Theorem

10.2, that there exists

lim
k→0

α(k)cσ =
(B−1f, 1)

(B−1η, 1)
:= β. (10.69)

If (10.69) holds then (10.67) implies that

σ(s, k) = σ0(s) +O(| ln k|−1) as k → 0 (10.70)

where

σ0(s) = B−1f − (B−1f, 1)

(B−1η, 1)
B−1η, (σ0, 1) = 0. (10.71)

Therefore u(x, k) =
∫
Γ g(x, t)σ(t, k)dt satisfies (10.9) with

u0(x) = β +

∫
Γ

g0(x, t)σ0(t)dt, g0(x, t) =
1

2π
ln

1

rxt
(10.72)

and

u(x, k) = u0(x) +O(| ln k|−1) as k → 0 (10.73)

where u0(x) solves the limiting problem and is bounded at infinity.

Conversely, if N(B) = {0} and (B−1η, 1) = 0, then (10.9) does not hold

for some f . Indeed, one can find f ∈ L2(Γ) such that (B−1f, 1) 
= 0. For

this f equation (10.9) does not hold. To prove this, note that equations
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(10.67) and (10.68) and the condition (B−1f, 1) 
= 0 imply that limk→0 cσ 
=
0, and

σ = B−1f −B−1ε(k)σ − α(k)B−1η[(B−1f, 1)− (B−1ε(k)σ, 1)]. (10.74)

It follows from (10.74) and (10.40) that

σ = −α(k)B−1η(B−1f, 1) +B−1f + o(|α(k)|−1) as k → 0. (10.75)

Therefore (σ, 1) = (B−1f, 1) + o(|α(k)|−1) and

u(x, k) =

∫
Γ

g(x, t)σdt = α(k)(B−1f, 1) +

∫
Γ

g0(x, t)σdt + o(1) as k → 0.

(10.76)

It is clear from (10.76) that |u(x, k)| → ∞ as k → 0 at least at some points

x. Lemma 10.2 is proved. �

Lemma 10.3 If (10.5) holds and N(B) 
= {0} then dimN(B) = 1.

Proof. Suppose Bh = 0, h 
≡ 0. Then (h, 1) 
= 0. Indeed, suppose

(h, 1) = 0. Define

w(x) =
1

2π

∫
Γ

ln
1

rxt
hdt. (10.77)

Then

∇2w = 0 in Ω ∪D,
w−
N + ηw = 0 on Γ

w = O(|x|−1) as |x| → ∞
(10.78)

Assumptions (10.5) imply that w = 0 in Ω, so w = 0 on Γ, ∇2w = 0 in D

and w = 0 in D. Therefore h = w+
N − w−

N = 0.

It is now easy to see that dimN(B) = 1. Indeed, let hj ∈ N(B),

(hj , 1) 
= 0, j = 1, 2. Then there exists a c = const such that (h1−ch2, 1) =
0. Since h1 − ch2 ∈ N(B), it follows that h1 = ch2. Lemma 10.3 is proved.

�

Lemma 10.4 If h ∈ N(B), h 
≡ 0, then

(ηQ0h, 1) 
= 0 (10.79)

and

B′Q0h = 0. (10.80)

Here B′ is the transpose of B.
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Proof. Assume that

Bh :=
A0h− h

2
+ ηQ0h = 0. (10.81)

Since A∗
0 = A′

0, one has (A0h, 1) = (h,A′
01) = −(h, 1). This and (10.80)

imply

0 =
(A0h, 1)− (h, 1)

2
+ (ηQ0h, 1) = −(h, 1) + (ηQ0h, 1),

or

(h, 1) = (ηQ0h, 1). (10.82)

Since (h, 1) 
= 0 equation (10.79) follows.

Note that

Q0A0 = A′
0Q0. (10.83)

Indeed, by Green’s formula
∫
Γ

ds′g(s, s′)∂g(s′, t)Ns′ =
∫
Γ

ds′∂g(s, s′)Ns′g(s′, t) (10.84)

which implies (10.83). Apply Q0 to (10.81) and use (10.83) to get

B′p :=
A′

0p− p

2
+Q0ηp = 0, p := Q0h, (10.85)

so that (10.80) is proved. Lemma 10.4 is proved. �

Lemma 10.5 If (10.5) holds and N(B) 
= {0} then (10.9) holds for

the solution to (10.1), (10.4). Conversely, if (10.9) holds for any f ∈
L2(Γ) for the solution to (10.1), (10.4), then dimN(B) ≤ 1. In the case

dimN(B) = 0, that is N(B) = {0}, condition (10.66) holds. In the case

dimN(B) = 1 conditions (10.79) and (10.80) hold.

Proof. The last statement is a part of Lemma 10.5. Let us prove that

(10.5) and N(B) 
= {0} imply (10.9) for the solution to (10.1), (10.4). By

Lemma 10.3, dimN(B) = 1 and by Lemma 10.4, equations (10.79), (10.80)

hold. To prove (10.9) it is sufficient to prove existence of the finite limits

lim
k→0

σ(s, k) = σ0(s),

lim
k→0

α(k)(σ, 1) = β.
(10.86)
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Let us prove (10.86). Define

B1 = B + P, P = (·, h)η, h ∈ N(B), h 
≡ 0. (10.87)

The operator B1 has a bounded inverse since it is injective and of

Fredholm type. Its injectivity is easy to prove: if B1σ = 0 then Bσ =

−(σ, h)η, and, by the necessary condition for solvability of the last equation,

(σ, h)(p, η̄) = 0, where p ∈ N(B′). Since, by (10.79), (p, η̄) = (ηp, 1) 
= 0,

it follows that (σ, h) = 0 and therefore Bσ = 0. Since dimN(B) = 1, one

concludes that σ = ch, c(h, h) = 0, so that c = 0 and σ = 0.

Write equation (10.65) as

σ + α(k)cσB
−1
1 (k)η −B−1

1 (k)Pσ = B−1
1 (k)f,

cσ = (σ, 1),

B1(k) = B1 + ε(k).

(10.88)

Let σh := (σ, h) and cσ = (σ, 1). Then it follows from (10.88) that

σh + α(k)cσ(B
−1
1 (k)η, h)− σh(B

−1
1 (k)η, h) = (B−1

1 (k)f, h),

cσ + α(k)cσ(B
−1
1 (k)η, h)− σh(B

−1
1 (k)η, 1) = (B−1

1 (k)f, 1).
(10.89)

The matrix of this system for σh and cσ is

T :=

[
1− (B−1

1 (k)η, h) α(k)(B−1
1 (k)η, h)

−(B−1
1 (k)η, 1) 1 + α(k)(B−1

1 (k)η, 1)

]
. (10.90)

Note that

‖B−1
1 (k)−B−1

1 ‖ → 0 as k → 0 (10.91)

and

det T = 1 + α(B−1
1 (k)η, 1)− (B−1

1 (k)η, h) := 1 + αb − a. (10.92)

Let us prove that b := (B−1
1 (k)η, 1) 
= 0 as k → 0. Indeed, by (10.90) one

has b → (B−1
η , 1). Denote B−1

1 η := q. We want to prove that (q, 1) 
= 0.

One has η = B1q = Bq + (q, h)η. We will prove that (q, h) = 1, so η =

Bq+η. Thus Bq = 0, q = ch, q 
≡ 0 so c 
= 0. Thus (q, 1) = c(h, 1) 
= 0. Let

us prove that (q, h) = 1. One has η = Bq + (q, h)η, so (η, p̄) = (q, h)(η, p̄).

Note that B′p = 0, so (Bq, p̄) = (q, B̄′p) = 0. Therefore (η, p̄) = (q, h)(η, p̄).

Since (η, p̄) = (ηp, 1) 
= 0 by (10.79), it follows that (q, h) = 1. Therefore,

for all sufficiently small k,

detT 
= 0 (10.93)
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and the system (10.89) is uniquely solvable for σh and cσ.

Let us solve (10.89) for cσ and σn. One has

cσ = (detT )−1
{[

1− (B−1
1 (k)η, h

)](
B−1

1 (k)f, 1
)

+
(
B−1

1 (k)η, 1
)(
B−1

1 (k)f, h
)}
.

Using (10.91) and taking k → 0 one gets

lim
k→0

α(k)cσ = β := (B−1
1 f, h) (10.94)

where the formula

lim
k→0

(B−1
1 (k)η, h) = 1 (10.95)

was used. Similarly,

lim
k→0

σh = β − B−1
1 f, 1)

(B−1
1 η, 1)

:= γ. (10.96)

So, formula (10.86) is proved.

From (10.94) and (10.61) it follows that

u(x, k) = u0(x) +O
(| ln k|−1

)
: = β +

∫
Γ

g0(x, s)σ0(s) ds+O
(| ln k|−1

)
as k → 0

(10.97)

where σ0(s) is defined by (10.86) and u0(x) solves the limiting problem.

Existence of the limit (10.86) follows immediately from (10.88), (10.91),

(10.94) and (10.96), and

σ0(s) = B−1
1 f − βB−1

1 η + γB−1
1 η. (10.98)

We have proved that N(B) 
= {0} and (10.5) imply (10.9) for the solution

to (10.1), (10.4).

Let us assume now that (10.9) holds for all f ∈ L2(Γ), and prove that

this implies either that N(B) = {0} and (10.6) holds, or that dimN(B) = 1

and (10.79), (10.80) hold. If (10.9) holds then the limits

lim
k→0

α(k)(σ, 1) = β, lim
k→0

σ(s, k) = σ0(s) (10.99)
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exist. Indeed, if the limit (10.99) exists then the existence of (10.99) follows

from the formula

u(x, k) = α(k)(σ, 1) +

∫
Γ

g0(x, t)σ(t, k)dt + o(1), k → 0 (10.100)

and the assumed existence of the limit

lim
k→0

u(x, k) = u0(x). (10.101)

Let us prove existence of the limit (10.99) assuming (10.101). Assume first

that B is injective. Then Lemma 10.5 yields (10.66) and the existence of

(10.99). If dimN(B) = 1, then Lemma 10.4 yields (10.79) and (10.80),

and the existence of the limits (10.99) can be established as follows. First

assume that N(Q0) = {0} and (Q−1
0 1, 1) 
= 0. Later we will drop these

extra assumptions. Write (10.99), with x = s ∈ Γ and cσ := (σ, 1), as

u(x, k) = α(k)cσ + (Q0 + 3)σ, εσ := (Q −Q0)σ. (10.102)

For k → 0 the operator Q0 + ε is invertible, so

σ + α(k)cσ(Qσ + ε)−11 = (Q0 + ε)−1u. (10.103)

The right-hand side of (10.103) has a finite limit as k → 0 because of

(10.101) and the equation ‖ε(k)‖H1(Γ)→H0(Γ) → 0 as k → 0. Integrate

(10.103) over Γ to get

cσ[1 + α(k)(Q0 + ε)−11, 1)] = (Q0 + ε)−1u, 1). (10.104)

Since (Q−1
0 1, 1) 
= 0 it follows that

cσ = O(|α(k)|−1), lim
k→0

α(k)cσ =
(
Q−1

0 u, 1
)/(

Q−1
0 1, 1

)
:= β. (10.105)

Here u = u|Γ. If at least one of the two extra assumptions (N(Q0) = {0}
and (Q−11, 1) 
= 0) is not satisfied then find a constant c > 0 such that

Q1 := Q0+c(·, 1) is invertible and (Q−1
1 1, 1) 
= 0. This is possible as follows

from the argument given in the proof of Theorem 10.2. Equation (10.102)

can be written as

u = α1(k)cσ + (Q1 + ε)σ, α1(k) := α(k)− c. (10.106)

Now one can repeat the argument given below formula (10.102) and obtain

(10.105) with α1(k) in place of α(k) and Q1 in place of Q0. This proves

(10.99). Equations (10.103), (10.105) and (10.101) imply (10.99).
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To complete the proof of Lemma 10.5 let us prove that if dimN(B) > 1

there exists an f ∈ L2(Γ) for which (10.9) does not hold for the solution to

(10.1), (10.4). Note that dimN(B) > 1 implies that (10.5) does not hold,

since we have proved in Lemma 10.3 that if (10.5) holds then dimN(B) ≤ 1.

Suppose to the contrary that (10.9) holds for all f ∈ L2(Γ). Then the limits

(10.99) exist. Therefore the limiting form of the equation (10.65)

Bσ − βη = f, β = β(σ) = const (10.107)

is solvable for all f ∈ L2(Γ). Since B is a Fredholm operator, the necessary

condition for the solvability of (10.107) is

(f − βη, p) = 0 ∀p ∈ N(B). (10.108)

If dimN(B) ≥ 2, condition (10.108) cannot be satisfied for all f ∈ L2(Γ)

since one has only one parameter β to satisfy two or more conditions

(10.108). Lemma 10.5 is proved.

Theorem 10.4 follows from Lemmas 10.2–10.5. �

10.5 The Method based on the Fredholm Property

The basic result of this section is: a necessary and sufficient condition

for the existence of the limit (10.9) is, roughly speaking, uniqueness of the

solution of the limiting problem. The approach we take is this: suppose that

the problem at hand, for example, (10.1), (10.2), or (10.1), (10.3), or (10.1),

(10.4), is of Fredholm type in the appropriate spaces. Then uniqueness of

the solution to the limiting problem implies, by the Fredholm property,

boundedness of the inverse operator.

The operator (10.1) depends continuously on k at k = 0, so its inverse

has the same property if it exists and is bounded. These ideas are used in

this section. The outlined approach allows one to handle operators with

variable coefficients since it does not use the detailed information about the

fundamental solution to equation (10.1).

Consider the problem

Lu+ k2u = F in Ω ⊂ R
n, k > 0, n ≥ 2 (10.109)

with one of the boundary conditions (10.2), (10.3) or (10.4) and the radia-

tion condition at infinity. Here

Lu = ∂i(aij∂ju)− q(x)u, (10.110)
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over the repeated indices one sums up, aij(x) ∈ C1(R2) is a strongly elliptic

real-valued matrix,

aij = δij for |x| > R

where R > 0 is an arbitrary large fixed number, q ∈ Q(β). Consider the

limiting problem

Lu0 = F in Ω (10.111)

u0 satisfies (10.2) or (10.3) or (10.4) (10.112)

u0(x) = O(1) as |x| → ∞ if n = 2 (a); u0(∞) = 0 if n > 2 (b)

(10.113)

Let us assume that∫
Ω

|F |2(1 + |x|)sdx <∞, s > 1, f ∈ H
3
2 (Γ) (10.114)

where f is the boundary function in (10.2), (10.3) or (10.4).

The basic assumption is:

Problem (10.111)–(10.113) has at most one solution. (10.115)

Let us introduce the space L2
s(Ω) := L2

s of functions with finite norm ‖u‖ =

(
∫
Ω
|u|2(1 + |x|)sdx) 1

2 . Our argument is valid with obvious modifications

in R
n, n > 2. All Fredholm operators in this Chapter are assumed to have

index zero.

Lemma 10.6 Consider a Fredholm operator A(k) : X1 → X2 from a

Banach space X1 into a Banach space X2, k ∈ [0, b] is a parameter. Assume

that ‖A(k)−A(k′)‖ → 0 as k → k′, k, k′ ∈ [0, b], and N(A(0)) = {0}. Then
A−1(k) is an isomorphism of X1 onto X2 for all k ∈ [0, δ] provided that

δ > 0 is sufficiently small and∥∥A−1(k)−A−1(0)
∥∥→ 0 as k → 0. (10.116)

Proof. By definition of a Fredholm operator, the range R(A(k)) of A(k)

is closed and its index is zero, that is, dimN(A(k)) = codimR(A(k)).

In particular, N(A(0)) = {0} implies that R(A(0)) = X2, so that A(0)

is an isomorphism of X1 onto X2. We claim that, for sufficiently small

δ > 0, the operator A(k) is an isomorphism of X1 onto X2 for all k ∈
[0, δ]. Indeed, A(k) = A(0) + A(k) − A(0) = A(0)[I + A−1(0)B(k)] where

B(k) := A(k)− A(0), ‖B(k)‖ → 0 as k → 0 by the assumption. Therefore
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the operator I + A−1(0)B(k) is an isomorphism of X1 onto X1 and A(0)

is an isomorphism of X1 onto X2, and the claim follows. The conclusion

(10.116) of Lemma 10.6 follows from the formula

A−1(k)−A−1(0) = −A−1(k)[A(k) −A(0)]A−1(0) (10.117)

if one takes into account that

sup
0≤k≤δ

‖A−1(k)‖ < c. (10.118)

To prove (10.118), assume the contrary. Then there is a sequence kn ∈ [0, δ]

such that ‖A−1(kn)‖ ≥ n. One can assume that kn → k0 ∈ [0, δ], and use

the identity

A−1(kn) =

{
I +A−1

(
k0
)[
A
(
kn
)−A

(
k0
)]}

A−1
(
k0
)
. (10.119)

As kn → k0, it follows from (10.119) that ‖A−1(kn)−A−1(k0)‖ → 0, so that

‖A−1(k0)‖ < c. Therefore (10.118) is proved. This completes the proof of

Lemma 10.6. �

Define the operator L : H2−s → Hs, where H2
s = {u : ‖u‖L2

s
+ ‖∂u‖L2

s
+

‖∂2u‖L2
s
} <∞, s > 1 and Hs = L2

s ⊕H0(Γ), by the formula

Lu := L(k)u =

(
F

f

)
, (L+ k2)u = F, γu = f (10.120)

where γu is the boundary operator (10.2), (10.3), or (10.4) and L is defined

in (10.110). For example, in the case (10.4),

γu = uN + η(s)u. (10.121)

The domain of definition of L belongs to H2
loc(Ω)∩L2

s(Ω). The operator L
satisfies the estimate which follows from elliptic theory

‖u‖H2
−s

≤ c
(‖F‖L2

s
+ ‖f‖Hα(Γ)

)
, 0 < c1 < �k < c2, 0 ≤ Im k ≤ 1,

(10.122)

where c does not depend on u, α = 3
2 for the Dirichlet boundary condition

and α = 1
2 for the conditions (10.3) or (10.4). Let us consider first n ≥ 3. In

this case using assumption (10.115) and the limiting absorption principle,

one can prove that the fundamental solution to the equation

Lg + k2g = −δ(x− y) in R
n, (10.123)
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where g satisfies the radiation condition at infinity, exists and is continuous

in k at k = 0. One can look for the solution to (10.9), (10.2) of the form

u =

∫
Ω

gF dy + v, (L+ k2)v = 0 in Ω

v =

∫
Γ

g(x, s, k)σ(s)ds, Qσ = f −
∫
Ω

gF dy
∣∣
Γ

(10.124)

where Qσ := v|Γ. The operator Q(k) : H0(Γ) → H1(Γ) is norm continuous

in k in the interval 0 ≤ k ≤ k0, where k0 > 0 is a sufficiently small number,

and Q−1(k) : H1(Γ) → H0(Γ) is bounded for k ∈ [0, k0] by (10.115). By

lemma 10.6, it follows that ‖Q−1(k) − Q−1(0)‖ → 0 as k → 0. We have

proved

Theorem 10.5 If n ≥ 3 and (10.115) holds, then |u(x, k) − u0(x)| → 0

as k → 0 uniformly on compacts in Ω.

If n = 2 then the result and the basic idea of the argument are the

same, but some modifications are needed to take into account that g is no

longer continuous as k → 0. For example, if L = ∇2 then g = i
4H

(1)
0 (kr),

r := |x− y|, so that (10.120) holds. However, due to the fact that the opera-
tor Q(k) : H0(Γ) → H1(Γ) acts as a differentiation, the unbounded compo-

nent of the operator Q(k)σ which, for L = ∇2, is the constant α(k)(σ, 1),

does not bring difficulties and one has ‖Q(k) − Q(k′)‖H0(Γ)→H1(Γ) → 0

as k → k′, k, k′ ∈ [0, k0). As above, assumption (10.115) implies that

Q−1(k) exists and, therefore, is bounded from H1(Γ) onto H0(Γ), since

Q(k) : H0(Γ) → H1(Γ) is Fredholm-type operator. The second point

which needs a discussion is the possible unboundedness of
∫
Ω
gFdy|Γ as

k → 0. Indeed,
∫
Ω
gFdy = α(k)

∫
Ω
Fdy +

∫
Ω
g0Fdy + o(1) as k → 0, and if∫

Ω Fdy 
= 0, this expression is O(| ln k|) as k → 0. The argument similar to

the given in the proof of Theorem 10.2 is applicable now. Indeed, equation

(10.124) can be written, for L = ∇2, as

α(k)cσ +Q0σ + ε(k)σ = f − α(k)c− h(k), cσ := (σ, 1) (10.125)

where Q0 and ε(k) are as in the proof of Theorem 2.2, c =
∫
Ω Fdy, and

‖h(k)−h(0)‖C(Γ) → 0 as k → 0. Assume that N(Q0) = {0}. Then (10.125)

can be written as

σ +Q−1
0 ε(k)σ + α(k)cσQ

−1
0 1 = Q−1

0 f − α(k)cQ−1
0 −Q−1

0 h(k). (10.126)
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Integrate (10.126) over Γ to get

cσ

[
1 + α(k)

(
Q−1

0 , 1
)]

=
(
Q−1

0

[
f − h(k)− ε(k)σ

]
, 1
)
− α(k)c

(
Q−1

0 , 1
)
.

(10.127)

As in Section 10.2, (Q−1
0 , 1) 
= 0, so that (10.127) implies

cσ = −c+O(|α|−1) as k → 0. (10.128)

From (10.126)–(10.128) one gets

σ = Q−1
0

[
f − h(0)

]− bQ−1
0 +O

(|α|−1
)
, b = lim

k→0

[
(cσ + c)α(k)

]

b =
(
Q−1

0 , 1
)−1
{(
Q−1

0 (f − h(0)), 1
)
+ c
}
.

(10.129)

Therefore σ(s, k) = σ0(s) +O(|α|−1) and

u(x, k) =

∫
Γ

g(x, s)σ ds+

∫
Ω

g(x, y)F (y)dy

= α
(
cσ + c

)
+ u0 +O

(|α|−1
)

= b+ φ0(x) +O
(|α|−1

)
:= u0(x) +O

(|α|−1
)

(10.130)

where b is defined in (10.129), φ0(x) :=
∫
Γ
g0(x, s)σ0(s) ds +∫

Ω g0(x, y)F (y)dy, and u0(x) solves the limit problem

Lu0 = F in Ω, u0 = f on Γ,
∣∣u0(∞)

∣∣ <∞. (10.131)

The last condition (10.131) is a consequence of the equation

φ0(x) =
1

2π
ln

1

|x|
[∫

Γ

σ0 ds+

∫
Ω

F (y)dy

]
+ o(1) as |x| → ∞ (10.132)

which implies φ0(x) = o(1) as |x| → ∞, since
∫
Γ σ0 ds+

∫
Γ Fdy = 0.

In this argument we used essentially the special form of L, namely L =

∇2, since the behavior of g as k → 0 has been used essentially. In the

general case of L given by (10.2) one needs a different method of reducing

the problem to a Fredholm-type equation, a method which does not use the

properties of the fundamental solution g in a neighborhood of k = 0.

This method is as follows. Assume that

sup
0≤k≤k0

‖u(x, k)‖ < c (10.133)

where u(x, k) is the solution to (10.109), (10.2) or (10.109), (10.3) or

(10.109), (10.4), and the norm in (10.133) is L2
−s(Ω), s > 1. Then using the
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elliptic regularity estimate one concludes that there is a sequence u(x, kn),

kn → 0, which converges to a limit u0(x) in H
2
loc(Ω) and in L2

−s(Ω). Pass-
ing to the limit kn → 0 in (10.109) and (10.2) yields (10.111)–(10.113) for

u0(x). Therefore, the desired result (10.9) follows from (10.133).

Lemma 10.7 Inequality (10.133) follows from (10.115).

Proof. If (10.133) is false then there is a sequence kn → 0 such that

‖u(x, kn)‖ ≥ n. Define vn := u(x, kn)
/‖u(x, kn)‖. Then

Lvn + k2nvn = Fn := F‖u(x, kn)‖−1, vn

∣∣∣
Γ
= fn := f‖u(x, kn)‖−1

‖vn‖ = 1

(10.134)

As above, one derives from (10.134) that

vn → v0 in H2
loc(Ω),

∥∥vn − v0
∥∥→ 0 as n→ ∞

Lv0 = 0 in Ω, v0 = 0 on Γ, v0 satisfies (10.113)
(10.135)

By the assumption (10.115), equation (10.135) imply v0 = 0, and (10.135)

implies ‖vn‖ → 0. This contradicts to (10.29), and the contradiction proves

(10.133). �

Let us summarize the result.

Theorem 10.6 If (10.115) holds then (10.9) holds for the solution to

(10.109), (10.2) or (10.109), (10.3) or (10.109), (10.4). Conversely, if

(10.9) holds for the solution to (10.109), (10.2) or (10.109), (10.3) or

(10.109), (10.4) for any F ∈ L2
0(Ω) and f = 0, or for F = 0 and any

f ∈ H3/2(Γ), then (10.115) holds.

Proof. The first part of the conclusion of Theorem 10.6 has been proved

above.

The second part follows from the solvability for all F and f of the

limiting problem (10.111)–(10.113) in the spacesH2−s → Hs, s > 2. Indeed,

a necessary condition for the solvability of (10.111)–(10.113) for some f ∈
H

3
2 (Γ) and F ∈ L2

s(Ω) is the orthogonality of F to all solutions w of the

homogeneous adjoint problem. Since this condition
∫
Ω Fw dx = 0 holds

for all F ∈ L2
0(Ω), it follows that w = 0. If F = 0 then the orthogonality

condition takes the form
∫
Γ
fwN ds = 0, ∀f ∈ H

3
2 (Γ). This implies that

wN = 0 on Γ. Since w = 0 on Γ by the assumption, one applies uniqueness

theorem for the solution of the Cauchy problem for elliptic equation Lw = 0
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in Ω and concludes that w = 0. Thus, (10.115) holds. Theorem 10.6 is

proved. �

10.6 The Method based on the Maximum Principle

Consider the problem (10.1), (10.2) in Ω ⊂ R
n, n ≥ 3. Let R = k−1.

Define c1(k) := sup |u(x, k)| where the supremum is taken over x ∈ Ω, |x| ≤
2 diamD := 2r0. From the elliptic estimates it follows that |∇u||x|=r0 ≤
cc1(k). We will use Green’s formula

u(x) =

∫
|s|=r0

(ugN − guN) ds, x ∈ B′
r0 . (10.136)

Here g satisfies the radiation condition B′
r0 = R

n\Br0 , Br0 = {x : |x| ≤ r0},

(∇2 + k2)g = −δ(x− y) in R
n, g(x) =

i

4

H
(1)
ν (k|x|)

(2πk|x|)ν k
2ν , ν :=

n− 2

2
(10.137)

where H
(1)
ν is the Hankel function. One has, uniformly in 0 < r < r0,

|φ(r)| ≤ c

{
r−2ν , n > 2

| ln r|+ 1, n = 2
, φ(r) :=

i

4
H(1)
ν (ρ)(2πρ)ν . (10.138)

By c we denote various positive constants independent of k. From (10.137)–

(10.138), one obtains

|g| ≤ c|x− y|−n+2, |∇g| ≤ c|x− y|−n+1 for |x− y| < 2k−1. (10.139)

Choose an arbitrary θ ∈ [0, 2π) and define

v(x, k, θ) = �
{
exp(iθ)

[
u(x, k)− u0(x)

]}
(10.140)

where u0(x) is the solution to problem (10.1), (10.2) with k = 0. Note that

Δv = −k2�{exp(iθ)u}, v = 0 on Γ (10.141)

v||x|=k−1 = �
{
exp(iθ)

[
u(x, k)− u0(x)

]}∣∣
|x|=k−1 . (10.142)

If v+ := α+ βr−n+4, r = |x|, α and β are positive constants, then

Δv+ = 2β(−N + 4)r−n+2 ≤ Δv for β = β1c1(k)k
2 (10.143)
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where c1(k) was defined earlier and β1 > 0 is a sufficiently large fixed

constant. Note that (10.136) and (10.139) imply that

|u(x, k)| ≤ cc1(k)|x|−n+2 for |x| < k−1. (10.144)

Note also that

v+||x|=k−1 ≥ v||x|=k−1 for α = α1c1(k)k
n−2 (10.145)

where α1 > 0 is a sufficiently large constant. By the maximum principle,

v(x, k) ≤ v+(x, k) for |x| ≤ k−1. Choosing θ = θ(x, k), which was arbitrary,

in a suitable way, one concludes that

∣∣u(x, k)− u0(x, k)
∣∣ ≤ v+(x) for |x| ≤ k−1. (10.146)

One has, if n > 4 and k → 0,

v+ ≤ α+ β max
0<d≤r≤k−1

r−n+4 ≤ α1c1(k)k
n−2 + β1c1(k)k

n−2 ≤ cc1(k)k
2

(10.147)

where d > 0 is a constant. From (10.146) and (10.147) it follows that

max
x∈Ω, |x|≤k−1

∣∣u(x, k)− u0(x)
∣∣ ≤ cc1(k)k

2, n > 4. (10.148)

By the definition of c1(k) and from the triangle inequality one gets

c1(k) ≤ max
x∈Ω, |x|≤k−1

|u0(x)| + cc1(k)k
2. (10.149)

This implies

c1(k) ≤ c0 := max
x∈Ω

|u0(x)|. (10.150)

Indeed, for n ≥ 3, by the maximum principle, for example, one has

max
x∈Ω

|u0(x)| = c0 <∞. (10.151)

We have assumed n > 4 so far. If n = 4 then one uses v+ = α+ β ln r,

Δv+ = 2βr−2, β < 0 and |β1| is sufficiently large (see (10.143)), α =

α1c1(k)k
2| ln k|. Equation (10.148) becomes

max
x∈Ω, |x|≤k−1

∣∣u(x, k)− u0(x)
∣∣ ≤ cc1(k)k

2| ln k| ≤ cc0k
2| ln k|, for n = 4.

(10.152)
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If n = 3 then v+ = α+ βr, Δv+ = 2βr−1, β1 < 0, |β1| is sufficiently large,

α = α1k and (10.148) becomes

max
x∈Ω, |x|≤k−1

∣∣u(x, k)− u0(x)
∣∣ ≤ c0k, for n = 3. (10.153)

We leave to the reader to check that the estimates (10.148), (10.152),

(10.153) are sharp: the rates given in the right-hand sides of these equalities

occur for the function H
(1)
ν (k|x|)|x|−ν [H(1)

ν (k)]−1. Let us formulate the

results.

Theorem 10.7 If n ≥ 3 then estimates (10.148), (10.152) and (10.153)

hold.

The case n = 2 can also be treated similarly. In this case one has

Theorem 10.8 If n = 2 then

sup
x∈Ω, |x|≤k−1

∣∣u(x, k)− u0(x)
∣∣ ≤ c| ln |x|| | ln k|−1. (10.154)

Proof. Choose v+ := α ln |x| + βs(k|x|), where α = α1| ln k|−1 α1 > 0 is

sufficiently large, β = β1| ln k|−1, β1 < 0, |β1| is sufficiently large, s(r) :=
1
4r

2(| ln r| + 2), r ∈ (0, 1). Using the argument similar to the one in the

proof of Theorem 10.7, one gets (10.154). �

The case of the data f depending on k and the operator (10.110) with

q ≥ 0 so that for this operator the maximum principle holds, can be treated

similarly. The arguments in this section are taken from [160].

Another idea based on coercivity estimates is developed in [134] and
[160] and applied to a study of the low-frequency behavior of the solutions

to dissipative Maxwell’s equations.

10.7 Continuity of Solutions to Operator Equations with

Respect to a Parameter

Let A(k)u(k) = f(k) be an operator equation in a Banach space X , k ∈
Δ ⊂ C is a parameter, A(k) : X → Y is a map, possibly nonlinear, Δ ⊂ C is

a domain. Sufficient conditions are given in this Section for the continuity

of u(k) with respect to k.
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10.7.1 Introduction

Let X and Y be Banach spaces, k ∈ Δ ⊂ C be a parameter, Δ be an open

bounded set on a complex plane C, A(k) : X → Y be a map, possibly

nonlinear, f := f(k) ∈ Y be a function.

Consider an equation

A(k)u(k) = f(k). (10.155)

We are interested in conditions, sufficient for the continuity of u(k) with

respect to k ∈ Δ. The novel points in our presentation include neces-

sary and sufficient conditions for continuity of the solution to equation

(10.155) and sufficient conditions for its continuity when the operator A(k)

is nonlinear.

Consider separately the cases when A(k) is a linear map and when A(k)

is a nonlinear map.

Assumptions 1. A(k) : X → Y is a linear bounded operator, and

(a) equation (10.155) is uniquely solvable for any k ∈ Δ0 := {k : |k− k0| ≤
r}, k0 ∈ Δ, Δ0 ⊂ Δ,

(b) f(k) is continuous with respect to k ∈ Δ0, supk∈Δ0
‖f(k)‖ ≤ c0;

(c) limh→0 supk∈Δ0
v∈M

‖[A(k+h)−A(k)]v‖ = 0, whereM ⊂ X is an arbitrary

bounded set,

d) supk∈Δ0
f∈N

‖A−1(k)f‖ ≤ c1, where N ⊂ Y is an arbitrary bounded set,

and c1 may depend on N .

Theorem 10.9 If Assumptions 1 hold, then

lim
h→0

∥∥u(k + h)− u(k)
∥∥ = 0. (10.156)

Proof. One has

u(k + h)− u(k) = A−1(k + h)f(k + h)−A−1(k)f(k)

= A−1(k + h)f(k + h)−A−1(k)f(k + h)

+A−1(k)f(k + h)−A−1(k)f(k).

(10.157)

∥∥∥A−1(k)
[
f(k+h)−f(k)]∥∥∥ ≤ c1

∥∥f(k+h)−f(k)∥∥→ 0 as h→ 0. (10.158)

∥∥A−1(k + h)−A−1(k)
∥∥ =

∥∥∥A−1(k + h)
[
A(h+ k)−A(k)

]
A−1(k)

∥∥∥
≤ c21

∥∥A(k + h)−A(k)
∥∥→ 0 as h→ 0.

(10.159)
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From (10.157)–(10.159) and Assumptions 1 the conclusion of Theorem

10.9 follows. �

Remark 10.2 Assumptions 1 are not only sufficient for the continuity

of the solution to (10.155), but also necessary if one requires the continuity

of u(k) uniform with respect to f running through arbitrary bounded sets.

Indeed, the necessity of the assumption a) is clear; that of the assumption

b) follows from the case A(k) = I, where I is the identity operator; that of

the assumption c) follows from the case A(k) = I, A(k + h) = 2I, ∀h 
= 0,

f(k) = g 
= 0 ∀k ∈ Δ0. Indeed, in this case assumption c) fails and one

has u(k) = g, u(k + h) = g
2 , so ||u(k + h) − u(k)|| = ||g||

2 does not tend to

zero as h→ 0.

To prove the necessity of the assumption (d), assume that

supk∈Δ0
‖A−1(k)‖ = ∞. Then, by the Banach-Steinhaus theorem,

there is an element f such that supk∈Δ0
‖A−1(k)f‖ = ∞, so that

limj→∞ ‖A−1(kj)f‖ = ∞, kj → k ∈ Δ0. Then ‖uj‖ := ‖u(kj)‖ =

‖A−1(kj)f‖ → ∞, so uj does not converge to u := u(k) = A−1(k)f ,

although kj → k.

Assumptions 2. A(k) : X → Y is a nonlinear map, and (a), (b), (c)

and (d) of Assumptions 1 hold, and the following assumption holds:

(e) A−1(k) is a homeomorphism of X onto Y for each k ∈ Δ0.

Remark 10.3 Assumption (e) is included in (d) in the case of a linear

operator A(k) because if ‖A(k)‖ ≤ c2 and ‖A−1(k)‖ ≤ c1 then A(k), k ∈
Δ0, is an isomorphism of X onto Y .

Theorem 10.10 If Assumptions 2 hold, then (10.156) holds.

Let us make the following Assumption Ad:

Assumption Ad: Assumptions 2 hold and

(f) ḟ(k) := df(k)
dk is continuous in Δ0,

(g) Ȧ(u, k) := ∂A(u,k)
∂k is continuous with respect to (wrt) k in Δ0 and wrt

u ∈ X ,

(j) supk∈Δ0
‖[A′(u, k)]−1‖ ≤ c3, where A

′(u, k) is the Fréchet derivative of

A(u, k) and [A′(u, k)]−1 is continuous with respect to u and k. ḟ(k) :=
df(k)
dk is continuous in Δ0.

Remark 10.4 If Assumption Ad holds, then

lim
h→0

‖u̇(k + h)− u̇(k)‖ = 0. (10.160)
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Remark 10.5 If Assumptions 1 hold except one: A(k) is not neces-

sarily a bounded linear operator, A(k) may be unbounded, closed, densely

defined operator-function, then the conclusion of Theorem 10.10 still holds

and its proof is the same. For example, let A(k) = L + B(k), where B(k)

is a bounded linear operator continuous with respect to k ∈ Δ0, and L is a

closed, linear, densely defined operator from D(L) ⊂ X into Y . Then

‖A(k + h)−A(k)‖ = ‖B(k + h)−B(k)‖ → 0 as h→ 0,

although A(k) and A(k + h) are unbounded.

In Section 10.7.2 proofs of Theorem 10.10 and of Remark 10.4 are given.

10.7.2 Proofs

Proof of Theorem 10.10. One has:

A(k + h)u(k + h)−A(k)u(k) = f(k + h)− f(k) = o(1) as h→ 0.

Thus

A(k)u(k + h)−A(k)u(k) = o(1)− [A(k + h)u(k + h)−A(k)u(k + h)].

Since sup{u(k+h):‖u(k+h)‖≤c} ‖A(k+ h)u(k+ h)−A(k)u(k+ h)‖ →
h→0

0, one

gets

A(k)u(k + h) → A(k)u(k) as h→ 0. (10.161)

By the Assumptions 2, item (e), the operator A(k) is a homeomorphism.

Thus (10.161) implies (10.156).

Theorem 10.10 is proved. �

Proof of Remark 10.4. First, assume that A(k) is linear. Then

d

dk
A−1(k) = −A−1(k)Ȧ(k)A−1(k), Ȧ :=

dA

dk
. (10.162)

Indeed, differentiate the identity A−1(k)A(k) = I and get dA−1(k)
dk A(k) +

A−1(k)Ȧ(k) = 0. This implies (10.162). This argument proves also the

existence of the deriviative dA−1(k)
dk . Formula u(k) = A−1(k)f(k) and the

continuity of ḟ and of dA−1(k)
dk yield the existence and continuity of u̇(k).

Remark 10.4 is proved for linear operators A(k).
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Assume now that A(k) is nonlinear, A(k)u := A(k, u). Then one can

differentiate (10.155) with respect to k and get

Ȧ(k, u) +A′(k, u)u̇ = ḟ , (10.163)

where A′ is the Fréchet derivative of A(k, u) with respect to u. Formally

one assumes that u̇ exists, when one writes (10.163), but in fact (10.163)

proves the existence of u̇, because ḟ and Ȧ(k, u) := ∂A(k,u)
∂k exist by the

Assumption Ad and [A′(k, u)]−1 exists and is an isomorphism by the

Assumption Ad, item (j). Thus, (10.163) implies

u̇ = [A′(k, u)]−1ḟ − [A′(k, u)]−1Ȧ(k, u). (10.164)

Formula (10.164) and Assumption Ad imply (10.160).

Remark 10.4 is proved. �

Consider some application of the above results to Fredholm equations

depending on a parameter.

Let

Au := u−
∫
D

b(x, y, k)u(y)dy := [I −B(k)]u = f(k), (10.165)

where D ⊂ Rn is a bounded domain, b(x, y, k) is a function on D × D ×
Δ0, Δ0 := {|k − k0| < r}, k0 > 0, r > 0 is a sufficiently small number.

Assume that A(k0) is an isomorphism of H := L2(D) onto H , for example,∫
D

∫
D
|b(x, y, k0)|2dxdy < ∞ and N(I − B(k0)) = {0}, where N(A) is

the null-space of A. Then, A(k0) is an isomprohism of H onto H by the

Fredholm alternative, and Assumptions 1 hold if f(k) is continuous with

respect to k ∈ Δ0 and

lim
h→0

∫
D

∫
D

|b(x, y, k + h)− b(x, y, k)|2dx dy = 0 k ∈ Δ0. (10.166)

Condition (10.166) implies that if A(k0) is an isomorphism of H onto H ,

then so is A(k) for all k ∈ Δ0 if |k − k0| is sufficiently small.

Remark 10.4 implies to (10.165) if ḟ is continuous with respect to k ∈
Δ0, and ḃ := ∂b

∂k is continuous with respect to k ∈ Δ0 as an element of

L2(D×D). Indeed, under these assumptions u̇ = [I −B(k)]−1(ḟ − Ḃ(k)u)

and the right-hand side of this formula is continuous in Δ0.



Chapter 11

Finding Small Inhomogeneities from
Scattering Data

A new method for finding small inhomogeneities from surface scattering

data is proposed and mathematically justified in this chapter. The presen-

tation follows [107] and is based on [105]. The method allows one to find

small holes and cracks in metallic and other objects from the observation

of the acoustic field scattered by the objects.

11.1 Introduction

In many applications one is interested in finding small inhomogeneities in

a medium from the observation of the scattered field, acoustic or electro-

magnetic, on the surface of the medium.

We have two typical examples of such problems in mind. The first one

is in the area of material science and technology. Suppose that a piece of

metal or other material is given and one wants to examine if it has small

cavities (holes or cracks) inside. One irradiates the metal by acoustic waves

and observes on the surface of the metal the scattered field. From these

data one wants to determine:

(1) are there small cavities inside the metal?

(2) if there are cavities, then where are they located and what are their

sizes?

Similar questions can be posed concerning localization not only of the

cavities, but any small in comparison with the wavelength inhomogeneities.

Our methods allow one to answer such questions.

As a second example, we mention the mammography problem. Cur-

rently x-ray mammography is widely used as a method of early diagnistics

of breast cancer in women. However, it is believed that the probability

for a woman to get a new cancer cell in her breast as a result of an x-ray

191
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mammography test is rather high. Therefore it is quite important to intro-

duce ultrasound mammography tests. This is being done currently. A new

cancer cells can be considered as small inhomogeneities in the healthy breast

tissue. The problem is to localize them from the observation on the surface

of the breast of the scattered acoustic field.

The purpose of this Section is to describe a new idea of solving the prob-

lem of finding inhomogeneities, small in comparison with the wavelength,

from the observation of the scattered acoustic or electromagnetic waves on

the surface of the medium.

For simplicity we present the basic ideas in the case of acoustic wave

scattering. These ideas are based on the earlier results on wave scattering

theory by small bodies presented in Chapter 7. Our objective in solving

the inverse scattering problem of finding small inhomogeneities from surface

scattering data are:

(1) to develop a computationally simple and stable method for a par-

tial solution of the above inverse scattering problem. The exact inversion

procedures (see [120], [107], and references therein) are computationally

difficult and unstable. In practice it is often quite important, and some-

times sufficient for practical purposes, to get a “partial inversion”, that is,

to answer questions of the type we asked above: given the scattering data,

can one determine if these data correspond to some small inhomogeneities

inside the body? If yes, where are these inhomogeneities located? What are

their intensities? We define the notion of intensity vm of an inhomogeneity

below formula (11.1).

Some theoretical and numerical results based on a version of the pro-

posed approach one can find in [105], [36].

11.2 Basic Equations

Let the governing equation be

[∇2 + k2 + k2v(x)
]
u = −δ(x− y) in R

3, (11.1)

where u satisfies the radiation condition, k = const > 0, and v(x) is the

inhomogeneity in the velocity profile.

Assume that supx∈R3 |v(x)| ≤ c0, supp v = UMm=1Bm(z̃m, ρm) ⊂ R
3
− =

{x | x(3) < 0}, where x(3) denotes the third component of vector x in

Cartesian coordinates, Bm(z̃m, ρm) is a ball, centered at z̃m with radius

ρm, kρm � 1.
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Denote

vm :=

∫
Bm

v(x)dx.

Problem 11.1 (Inverse Problem (IP):) Given u(x, y, k) for all x, y ∈
P , P = {x | x(3) = 0} and a fixed k > 0, find {z̃m, vm}, 1 ≤ m ≤M .

In this section we propose a numerical method for solving the (IP).

To describe this method let us introduce the following notations:

P := {x | x(3) = 0} (11.2)

{xj , yj} := ξj , 1 ≤ j ≤ J, xj , yj ∈ P

are the points at which the data u(xj , yj, k) are collected
(11.3)

k > 0 is fixed (11.4)

g(x, y, k) :=
exp(ik|x− y|)

4π|x− y| (11.5)

Gj(z) := G(ξj , z) := g(xj , z, k)g(yj, z, k) (11.6)

fj :=
u(xj , yj , k)− g(xj , yj, k)

k2
(11.7)

Φ(z1, . . . , zM , v1, . . . , vM ) :=

J∑
j=1

∣∣∣∣fj −
M∑
m=1

Gj(zm)vm

∣∣∣∣
2

. (11.8)

The proposed method for solving the (IP) consists in finding the global

minimizer of function (11.8). This minimizer (z̃1, . . . , z̃M , ṽ1, . . . , ṽM ) gives

the estimates of the positions z̃m of the small inhomogeneities and their

intensities vm. This is explained in more detail below formula (11.14).

Numerical realization of the proposed method, including a numerical pro-

cedure for estimating the number M of small inhomogeneities from the

surface scattering data is described in [36].

Our approach with a suitable modification is valid in the situation when

the Born approximation fails, for example, in the case of scattering by delta-

type inhomogeneities [2], [28], [107].

In this case the basic condition

Mk2c0ρ
2 � 1, (∗)
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which guarantees the applicability of the Born approximation, is violated.

Here ρ := max1≤m≤M ρm and c0 was defined below formula (11.1). We

assume throughout that M is not very large, between 1 and 15.

In the scattering by a delta-type inhomogeneity the assumption is

c0ρ
3 = const := V as ρ → 0, so that for any fixed k > 0 one has

k2c0ρ
2 = k2V ρ−1 → ∞ as ρ→ 0, and clearly condition (∗) is violated.

In our notations this delta-type inhomogeneity is of the form k2v(x) =

k2
∑M

m=1 vmδ(x− z̃m).

The scattering theory by the delta-type potentials (see [2]) requires some

facts from the theory of selfadjoint extensions of symmetric operators in

Hilbert spaces and in this section we will not go into detail (see [28]).

11.3 Justification of the Proposed Method

We start with an exact integral equation equivalent to equation (11.1) with

the radiation condition:

u(x, y, k) = g(x, y, k) + k2
M∑
m=1

∫
Bm

g(x, z, k)v(z)u(z, y, k)dz. (11.9)

For small inhomogeneities the integral on the right-hand side of (11.9) can

be approximately written as

k2
∫
Bm

g(x, z, k)v(z)u(z, y, k)dz :

= k2
∫
Bm

g(x, z, k)v(z)g(z, y, k)dz + ε2

= k2G(x, y, zm)

∫
Bm

vdz + ε2

= k2G(ξ, zm)vm + ε2, 1 ≤ m ≤M

(11.10)

where ε2 is defined by the first equation in formula (11.10), it is the error

due to replacing u under the sign of integral in (11.9) by g, and zm is a

point close to z̃m.

One has |u − g| = O(Mk2c0ρ
3/d2) if x, y ∈ P, and |u − g| =

O(Mk2c0ρ
2/d) if x ∈ D,y ∈ P . Thus, the error term ε2 in (10.3.10) equals

to O(M2k4c20ρ
5/d2) if x, y ∈ P .
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Therefore the function u(z, y, k) under the sign of the integral in (11.9)

can be replaced by g(z, y, k) with a small relative error ε2

|g| , where y ∈ P

and z ∈ D, provided that:

c20M
2k2

ρ5

d
� 1, x, y ∈ P, (11.11)

where ρ = max1≤m≤M ρm, c0 := maxx∈R3 |v(x)|, M is the number of

inhomogeneities, d is the minimal distance from Bm, m = 1, 2, . . . ,M to

the surface P .

A sufficient condition for the validity of the Born approximation, that

is, the approximation u(x, y, k) ∼ g(x, y, k) for x, y ∈ D, is the smallness of

the relative error |u(x,y,k)−g(x,y,k)|
|g(x,y,k)| for x ∈ D, y ∈ P , which holds if:

Mk2c0ρ
2 := δ � 1. (11.12)

One has:

ε2 = O
(M2k4c20ρ

5

d2

)
= O

(δ2ρ
d2

)
� 1,

if ρ� d and if δ is not small, so that the Born approximation may be not

applicable. Note that u in (11.9) has dimension L−1, where L is the length,

v(z) is dimensionless, and ε2 has dimension L−1. In many applications it

is natural to assume ρ� d.

If the Born approximation is not valid, for example, if c0ρ
3 = V �= 0

as ρ → 0, which is the case of scattering by delta-type inhomogeneities,

then the error term ε2 in formula (11.10) can still be negligible: ε2 =

O(M2k4c0V ρ
2/d2), so ε2 � 1 if M2k4V ρ2/d2 � 1.

If one understands a sufficient condition for the validity of the Born

approximation as the condition which guarantees the smallness of ε2 for

all x, y ∈ R
3 then condition (11.12) is such a condition. However, if one

understands a sufficient condition for the validity of the Born approxima-

tion as the condition which guarantees the smallness of ε2 for x, y running

only through the region where the scattered field is measured, in our case

when x, y ∈ P , then a much weaker condition (11.11) will suffice.

In the limit ρ → 0 and c0ρ
3 = V �= 0 formula (11.10) takes the

form (11.13), (see [28]). It is shown in [28] (see also [2]) that the resolvent

kernel of the Schrödinger operator with the delta-type potential supported

on a finite set of points (in our case on the set of points z̃1, . . . , z̃M ) has the
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form

u(x, y, k) = g(x, y, k) + k2
M∑
m=1

cmm′g(x, z̃m)g(y, z̃m′) (11.13)

where cmm′ are some constants. These constants are determined by a selfad-

joint realization of the corresponding Schrödinger operator with delta-type

potential. There is an M2-parametric family of such realizations (see [28]

for more details).

Although in general the matrix cmm′ is not diagonal, under a practi-

cally reasonable assumption (11.11) one can neglect the off-diagonal terms

of the matrix cmm′ and then formula (11.13) reduces practically to the

form (11.10) with the term ε2 neglected.

We have assumed in (11.10) that the point zm exists such that

∫
Bm

g(x, z, k)v(z)g(z, y, k)dz = G(x, y, zm)vm.

This is an equation of the type of mean-value theorem. However, such a

theorem does not hold, in general, for complex-valued functions. Therefore,

if one wishes to have a rigorous derivation, one has to add to the error

term ε2 in (11.10) the error which comes from replacing of the integral∫
Bm

g(x, z, k)v(z)g(z, y, k)dz in (11.10) by the term G(x, y, zm)vm. The

error of such an approximation can be easily estimated. We do not give such

an estimate, because the basic conclusion that the error term is negligible

compared with the main term k2G(x, y, zm)vm remains valid under our

basic assumption kρ� 1. From (11.10) and (11.7) it follows that

fj ≈
M∑
m=1

Gj(zm)vm, Gj(zm) := G(ξj , zm, k). (11.14)

Therefore, parameters z̃m and vm can be estimated by the least-squares

method if one finds the global minimum of the function (11.8):

Φ(z1, . . . , zM , v1, . . . , vM ) = min . (11.15)

Indeed, if one neglects the error of the approximation (11.10), then the

function (11.8) is a smooth function of several variables, namely, of

z1, z2, . . . , zM , v1, v2, . . . , vM , and the global minimum of this function is

zero and is attained at the actual intensities v1, v2, . . . , vM and at the val-

ues zi = zi, i = 1, 2, . . . ,M .
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This follows from the simple argument: if the error of approximation

is neglected, then the approximate equality in (11.14) becomes an exact

one. Therefore fj−
∑M
m=1Gj(zm)vm = 0, so that function (11.8) equals to

zero. Since this function is non-negative by definition, it follows that the

values zm and vm are global minimizers of the function (11.8). Therefore

we take the global minimizers of function (11.8) as approximate values of

the positions and intensities of the small inhomogeneities.

In general we do not know that the global minimizer is unique, and in

practice it is often not unique. For the case of one small inhomogeneity

(m = 1) uniqueness of the global minimizer is proved in [46] for all suffi-

ciently small ρm for a problem with a different functional. The problem

considered in [46] is the (IP) with M = 1, and the functional minimized

in [46] is specific for one inhomogeneity.

In Chapter 7 analytical formulas for the scattering matrix are derived for

acoustic and electromagnetic scattering problems. An important ingredient

of our approach from the numerical point of view is the solution of the

global minimization problem (11.14). The theory of global minimization is

developed extensively and the literature of this subject is quite large (see
[129]). In [36] a numerical implementation of the algorithm presented in

Chapter 11 is given.

The problem of detection of small inhomogeneities from boundary mea-

surements in impedance tomography is studied in [4] by a quite different

approach, see also [46].
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Chapter 12

Modified Rayleigh Conjecture and
Applications

12.1 Modified Rayleigh Conjecture and Applications

Modified Rayleigh Conjecture (MRC) in scattering theory is proposed and

justified. MRC allows one to develop numerical algorithms for solving direct

scattering problems related to acoustic wave scattering by soft and hard

obstacles of arbitrary shapes. It gives an error estimate for solving the

direct scattering problem. It suggests a numerical method for finding the

shape of a star-shaped obstacle from the scattering data. Section 12.1 is

based on [116]. A numerical implementation of MRC method is given in

Section 12.2 and is based on the paper [119]. Section 12.2.1 is based on the

paper [117].

12.1.1 Introduction

Consider a bounded domain D ⊂ R
n, n = 3 with a boundary S. The

exterior domain is D′ = R
3\D. Assume that S is smooth and star-shaped,

that is, its equation can be written as

r = f(α), (12.1)

where α ∈ S2 is a unit vector and S2 denotes the unit sphere in R3. Smooth-

ness of S is used in (12.18) below. For solving the direct scattering problem

by the method described in the beginning of Section 12.2, the boundary S

can be Lipschitz. The acoustic wave scattering problem by a soft obstacle

D consists in finding the (unique) solution to the problem (12.2)-(12.3):

(∇2 + k2
)
u = 0 in D′, u = 0 on S, (12.2)

199



200 Modified Rayleigh Conjecture and Applications

u = u0 + v := u0 +A(α′, α)
eikr

r
+ o

(
1

r

)
, r := |x| → ∞, α′ :=

x

r
.

(12.3)

Here u0 := eikα·x is the incident field, v is the scattered field, A(α′, α) is

called the scattering amplitude, its k-dependence is not shown, and k > 0

is the wavenumber. Denote

A�(α) :=

∫
S2

A(α′, α)Y�(α′)dα′, (12.4)

where Y�(α) are the orthonormal spherical harmonics, Y� = Y�m, −� ≤
m ≤ �. Let h�(r) be the spherical Hankel functions, normalized so that

h�(kr) ∼ eikr

r as r → +∞. Let the ball BR := {x : |x| ≤ R} contain D.

In the region r > R the solution to (12.2)-(12.3) is:

u(x, α) = eikα·x +
∞∑
�=0

A�(α)ψ�, ψ� := Y�(α
′)h�(kr), r > R, α′ =

x

r
,

(12.5)

summation includes summation with respect to m, −� ≤ m ≤ �, and A�(α)

are defined in (12.4).

Rayleigh conjecture (RC): the series (12.5) converges up to the boundary

S (originally RC dealt with periodic structures, gratings). This conjecture

is wrong for many domains, although it holds for some, for example, for

a ball (see [5], [133], [120]). If n = 2 and D is an ellipse, then the series

analogous to (12.5) converges in the region r > a, where 2a is the distance

between the foci of the ellipse [5]. In the engineering literature there are

numerical algorithms, based on the Rayleigh conjecture. Our aim is to give

a formulation of a modified Rayleigh conjecture (MRC) which is correct

and can be used in numerical solution of the direct and inverse scattering

problems. We discuss the Dirichlet condition but similar argument is appli-

cable to the Neumann boundary condition, corresponding to acoustically

hard obstacles.

Fix ε > 0, an arbitrary small number.

Lemma 12.1 There exist L = L(ε) and c� = c�(ε) such that

∥∥∥u0 +
L(ε)∑
�=0

c�(ε)ψ�

∥∥∥
L2(S)

≤ ε. (12.6)
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If (12.6) and the boundary condition (12.2) hold, then

∥∥vε − v
∥∥
L2(S)

≤ ε, vε :=

L(ε)∑
�=0

c�(ε)ψ�. (12.7)

Lemma 12.2 If (12.7) holds then∥∥vε − v
∥∥ = O(ε) ε→ 0, (12.8)

where ‖ ·‖ := ‖ ·‖Hm
loc(D

′)+‖ ·‖L2(D′;(1+|x|)−γ), γ > 1, m > 0 is an arbitrary

integer, and Hm is the Sobolev space.

In particular, (12.8) implies∥∥vε − v
∥∥
L2(SR)

= O(ε) ε→ 0. (12.9)

Lemma 12.3 One has:

c�(ε) → A�(α)∀�, ε→ 0. (12.10)

The modified Rayleigh conjecture (MRC) is formulated as a theorem,

which follows from the above three lemmas:

Theorem 12.1 (MRC): For an arbitrary small ε > 0 there exist L(ε)

and c�(ε), 0 ≤ � ≤ L(ε), such that (12.6), (12.8) and (12.10) hold.

The difference between RC and MRC is: (12.7) does not hold if one

replaces vε by
∑L
�=0A�(α)ψ�, and let L→ ∞ (instead of letting ε→ 0).

For the Neumann boundary condition one minimizes the function

‖∂[u0+
∑L

�=0 c�ψ�]

∂N ‖L2(S) with respect to c�. Analogs of Lemmas 12.1–12.3

are valid and their proofs are essentially the same.

In Section 12.1.2 we discuss the usage of MRC in solving the direct scat-

tering problem, in Section 12.1.3 its usage in solving the inverse scattering

problem, and in Section 12.1.4 proofs are given.

12.1.2 Direct scattering problem and MRC

The direct problem consists in finding the scattered field v given S and

u0. To solve it using MRC, fix a small ε > 0 and find L(ε) and c�(ε)

such that (12.6) holds. This is possible by Lemma 12.1 and can be done

numerically by minimizing ‖u0 +
∑L

0 c�ψ�‖L2(S) := φ(c1, . . . , cL). If the

minimum of φ is larger than ε, then increase L and repeat the minimization.

Lemma 12.1 guarantees the existence of such L and c� that the minimum

is less than ε. Choose the smallest L for which this happens and define
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vε :=
∑L
�=0 c�ψ�(x). Then vε is the approximate solution to the direct

scattering problem with the accuracy O(ε) in the norm || · || by Lemma 12.2

In [106] representations of v and vε are proposed, which greatly simpli-

fied minimization of φ. Namely, let Ψ� solve problem

(∇2 + k2
)
Ψ� = 0 in D′, Ψ� = f� on S, (12.11)

and Ψ� satisfies the radiation condition. Here {f�}�≥0 is an arbitrary or-

thonormal basis of L2(S). Denote

v(x) :=

∞∑
�=0

c�Ψ�(x), u(x) := u0 + v(x), cl :=
(− u0, f�

)
L2(S)

. (12.12)

The series (12.12) on S is a Fourier series which converges in L2(S). It

converges pointwise in D′ by the argument given in the proof of Lemma

12.2. A possible choice of f� for star-shaped S is f� = Y�/
√
w where w :=

dS/dα. Here dS and dα are respectively the elements of the surface areas

of the surface S and of the unit sphere S2.

12.1.3 Inverse scattering problem and MRC

Inverse obstacle scattering problems (IOSPa) and (IOSPb) consist of finding

S and the boundary condition on S from the knowledge of:

(IOSPa): the scattering data A(α′, α, k0) for all α′, α ∈ S2, k = k0 > 0

being fixed,

or,

(IOSPb): A(α′, α0, k), known for all α′ ∈ S2 and all k > 0, α = α0 ∈ S2

being fixed.

Uniqueness of the solution to (IOSPa) is proved by the author (1985) for

the Dirichlet, Neumann and Robin boundary conditions, and of (IOSPb) by

M.Schiffer (1964), who assumed a priori the Dirichlet boundary condition.

The proofs are given in [133], [107]. The author has also proved that not

only S but the boundary condition as well is uniquely defined by the above

data in both cases, and gave stability estimates for the solution to IOSP
[133]. Later he gave a different method of proof of the uniqueness theorems

for these problems which covered the rough boundaries (Lipschitz and much

rougher boundaries: the ones with finite perimeter [144], see also [104]. In
[89] the uniqueness theorem for the solution of inverse scattering problem is

proved for a wide class of transmission problems. It is proved that not only
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the discontinuity surfaces of the refraction coefficient but also the coefficient

itself inside the body and the boundary conditions across these surfaces are

uniquely determined by the fixed-frequency scattering data. For any strictly

convex, smooth, reflecting obstacle D analytical formulas for finding S from

the high-frequency asymptotics of the scattering amplitude are proposed by

he author, who gave error estimates of his inversion formula also [120]. The

uniqueness theorems in the above references hold if the scattering data are

given not for all α′, α ∈ S2, but only for α′ and α in arbitrary small solid

angles, i.e., in arbitrary small open subsets of S2. The inverse scattering

problem with the data α′ ∈ S2, k = k0 and α = α0 being fixed, is open. If a

priori one knows thatD is sufficiently small, so that k0 > 0 is not a Dirichlet

eigenvalue of the laplacian in D, then uniqueness of the solution with the

above non-overdetermined data holds (by the usual argument [133]). There

are many parameter-fitting schemes for solving IOSP (see [120], [107]).

Let us describe a scheme, based on MRC. Suppose that the scattered

field v is observed on a sphere SR. Calculate c� := (v, Y�)L2(S2)/h�(kR). If

v is known exactly, then c� = A�(α). If vδ are noisy data, ‖v− vδ‖L2(SR) ≤
δ, then c� = c�δ. Choose some L, say L = 5, and find r = r(α′) as a

positive root of the equation u0 + vL := eikα·α
′r +

∑L
�=0 c�δψ�(kr, α

′) :=

p(r, α′, α, k) = 0. Here α′ and k > 0 are fixed, and we are looking for the

root r = r(α′) which is positive and is stable under changes of k and α.

In practice equation p(r, α′, α, k) = 0 may have no such root, the root may

have small imaginary part. If for the chosen L such a root (that is, a root

which is positive, or has a small imaginary part, and stable with respect

to changes of k and α) is not found, then increase L, and/or decrease

L, and repeat the search of the root. Stop the search at a smallest L

for which such a root is found. The MRC justifies this method: for a

suitable L the function p(r, α′, α, k) is approximately equals zero on S, that

is, for r = r(α′), and this r(α′) does not depend on k and α. Moreover,

by the uniqueness theorem for (IOSPa) and (IOSPb) there is only one

such r = r(α′). Numerically one expects to find a root of the equation

p(r, α′, k) = 0 which is close to positive semiaxis r > 0 and stable with

respect to changes of k and α.

If one uses the above scheme for solving the inverse scattering problem

for an acoustically hard body (the Neumann boundary condition on S),

then one gets not a transcendental equation p(r, α′, α, k) = 0 for finding the

equation of S, r = r(α′), but a differential equation for r = r(α′), which
comes from the equation ∂p(r,α′,α,k)

∂N = 0 at r = r(α′). One has to write

the normal derivative on S in spherical coordinates and then substitute
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r = r(α′) into the result to get a differential equation for the unknown

function r = r(α′). For example, if n = 2 (the two-dimensional case), then

the role of α′ plays the polar angle ϕ′ and the equation for r = r(ϕ′) takes
the form dr

dϕ′ = (r2 dpdr/
dp
dϕ′ )|r=r(ϕ′), and r(ϕ

′) = r(ϕ′ + 2π).

12.1.4 Proofs

Proof of Lemma 12.1. This Lemma follows from the results in [133],

(p.162, Lemma 1). �

Proof of Lemma 12.2. By Green’s formula one has

vε(x) =

∫
S

vε(s)GN (x, s)ds,
∥∥vε(s) + u0

∥∥
L2(S)

< ε, (12.13)

where N is the unit normal to S, pointing into D′, and G is the Dirichlet

Green’s function of the Laplacian in D′:
(∇2 + k2

)
G = −δ(x− y) in D′, G = 0 on S, (12.14)

lim
r→∞

∫
|x|=r

∣∣∣∣ ∂G∂|x| − ikG

∣∣∣∣
2

ds = 0 (12.15)

From (12.13) one gets (12.8) with Hm
loc(D

′)-norm immediately by the

Cauchy inequality, and with the weighted norm from the estimate

|GN (x, s)| ≤ c

1 + |x| , |x| ≥ R, (12.16)

and from local elliptic estimates for wε := vε − v, which imply that

∥∥wε∥∥L2(BR\D)
≤ cε. (12.17)

Let us recall the elliptic estimate we use. Let D′
R := BR\D, SR be the

boundary of BR, and choose R such that k2 is not a Dirichlet eigenvalue of

−Δ in D′
R. The elliptic estimate we have used is ([62], p.189):

∥∥wε∥∥Hm(D′
R)

≤ c
[∥∥(Δ+k2)wε

∥∥
Hm−2(D′

R)
+
∥∥wε∥∥Hm−0.5(SR)

+
∥∥wε∥∥Hm−0.5(S)

]
.

(12.18)

Takem = 0.5 in (12.18), use the equation (Δ+k2)wε = 0 inD′, the estimate

‖wε‖Hm(SR) = O(ε), proved above, the estimate ‖wε‖H0(S) = O(ε), and get

(12.8). For m = 0.5 the space in the first term on the right-hand side
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of formula (4.6) differs from the usual Sobolev space Hm−2(D′
R) (cf [62],

p.189), but (Δ + k2)wε = 0, so this term vanishes anyway.

Lemma 12.2 is proved. �

Proof of Lemma 12.3. Lemma 12.2 yields convergence of vε to v in

the norm || · ||. In particular, ||vε − v||L2(SR) → 0 as ε→ 0. On SR one has

v =
∑∞
�=0A�(α)ψ� and vε =

∑L(ε)
�=0 c�ψ�. Multiply vε(R,α

′) − v(R,α′) by

Y�(α′), integrate over S2 and then let ε→ 0. The result is (12.10). �

12.2 Modified Rayleigh Conjecture Method for

Multidimensional Obstacle Scattering Problems

The Rayleigh conjecture on the representation of the scattered field in the

exterior of an obstacle D is widely used in applications. However this

conjecture is false for some obstacles. In this section, based on [119], [34],

numerical algorithms, based on the MRC, are implemented for various 2D

and 3D obstacle scattering problems. The 3D obstacles include a cube and

an ellipsoid. The MRC method is easy to implement for both simple and

complex geometries. It is shown to be a viable alternative for other obstacle

scattering methods.

12.2.1 Introduction

The basic theoretical foundation of the MRC method was developed in
[116]. The MRC has the appeal of an easy implementation for obstacles

of complicated geometry, e.g. having edges and corners. In the numerical

experiments ([34], [119], [37], [125]) the method is proved to be a competi-

tive alternative to the BIEM (boundary integral equations method). Unlike

the BIEM, the MRC-based algorithm can be applied to different obstacles

with very little additional effort. In this Section we describe, following [119],

Random Multi-point MRC implementation, which made it possible to suc-

cessfully solve numerically some 3D obstacle scattering problems. Different

implementations of MRC method are given in [125] and [37].

Earlier, in [34] the Multi-point MRC method was used for 2D obstacles

of a relatively simple geometry. In this Section an implementaion of MRC

method for 3D problems is proposed, and an improvement of our earlier

results is obtained.

We formulate the obstacle scattering problem in a 3D setting with the

Dirichlet boundary condition, but the MRC method can also be used for

the Neumann and Robin boundary conditions.
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Consider a bounded domain D ⊂ R
3, with a boundary S which is

assumed to be Lipschitz continuous. Denote the exterior domain by D′ =
R

3\D. Let α, α′ ∈ S2 be unit vectors, and S2 be the unit sphere in R
3.

The acoustic wave scattering problem by a soft obstacle D consists in

finding the (unique) solution to the problem (12.2)-(12.3).

Informally, the Random Multi-point MRC algorithm can be described

as follows.

Fix a J > 0. Let xj , j = 1, 2, . . . , J be a batch of points randomly

chosen inside the obstacle D. For x ∈ D′, let

α′ =
x− xj
|x− xj | , ψ�(x, xj) = Y�(α

′)h�
(
k
∣∣x− xj

∣∣). (12.19)

Let g(x) = u0(x), x ∈ S, and minimize the discrepancy

Φ(c) =

∥∥∥∥g(x) +
J∑
j=1

L∑
�=0

c�,jψ�(x, xj)

∥∥∥∥
L2(S)

, (12.20)

over c ∈ C
N , where c = {c�,j}. That is, the total field u = g(x)+v is desired

to be as close to zero as possible at the boundary S, to satisfy the required

condition for the soft scattering. If the resulting residual rmin = minΦ is

smaller than the prescribed tolerance ε, than the procedure is finished, and

the sought scattered field is

vε(x) =

J∑
j=1

L∑
�=0

c�,jψ�(x, xj), x ∈ D′.

If, on the other hand, the residual rmin > ε, than we continue by trying

to improve on the already obtained fit in (12.23). Adjust the field on the

boundary by letting g(x) := g(x) + vε(x), x ∈ S. Create another batch of

J points randomly chosen in the interior of D, and minimize (12.20) with

this new g(x). Continue with the iterations until the required tolerance ε

on the boundary S is attained, at the same time keeping the track of the

changing field vε.

The minimization in (12.20) is always done over the same number of

points J . However, the points xj are sought to be different in each itera-

tion to assure that the minimal values of Φ are decreasing in consequent

iterations. Thus, computationally, the size of the minimization problem

remains the same. This is the new feature of the Random multi-point
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MRC method, which allows it to solve scattering problems untreatable by

previously developed in [34] MRC methods.

Below is the description of the algorithm.

Random Multi-point MRC

For xj ∈ D, and � ≥ 0 functions ψ�(x, xj) are defined as in (12.22).

(1) Initialization. Fix ε > 0, L ≥ 0, J > 0, Nmax > 0. Let n = 0, vε = 0

and g(x) = u0(x), x ∈ S.

(2) Iteration.

(a) Let n := n+ 1. Randomly choose J points xj ∈ D, j = 1, 2, . . . , J .

(b) Minimize

Φ(c) =

∥∥∥∥g(x) +
J∑
j=1

L∑
�=0

c�,jψ�
(
x, xj

)∥∥∥∥
L2(S)

over c ∈ C
N , where c = {c�,j}.

Let the minimal value of Φ be rmin.

(c) Let

vε(x) := vε(x) +

J∑
j=1

L∑
�=0

c�,jψ�(x, xj), x ∈ D′.

(3) Stopping criterion.

(a) If rmin ≤ ε, then stop.

(b) If rmin > ε, and n 
= Nmax, let

g(x) := g(x) +
J∑
j=1

L∑
�=0

c�,jψ�
(
x, xj

)
, x ∈ S

and repeat the iterative step (2).

(c) If rmin > ε, and n = Nmax, then the procedure failed.
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Direct cattering problems and the Rayleigh conjecture

Let a ball BR := {x : |x| ≤ R} contain the obstacle D. In the region r > R

the scattering solution is:

u(x, α) = eikα·x +
∞∑
�=0

A�(α)ψ�, ψ� := Y�(α
′)h�(kr), r > R, α′ =

x

r
,

(12.21)

where the sum includes the summation with respect to m, −� ≤ m ≤ �,

and A�(α) are defined in (12.4).

The Rayleigh conjecture (RC) is: the series (12.21) converges up to the

boundary S (originally RC dealt with periodic structures, gratings). This

conjecture is false for many obstacles, but is true for some ([5], [67], [133]).

For example, if n = 2 and D is an ellipse, then the series analogous to

(12.21) converges in the region r > a, where 2a is the distance between

the foci of the ellipse [5]. In the engineering literature there are numer-

ical algorithms, based on the Rayleigh conjecture. Our aim is to give a

formulation of a Modified Rayleigh Conjecture (MRC) which holds for any

Lipschitz obstacle and can be used in numerical solution of the direct and

inverse scattering problems. We discuss the Dirichlet condition but similar

argument is applicable to the Neumann boundary condition, corresponding

to acoustically hard obstacles.

The difference between RC and MRC is: (12.7) does not hold if one

replaces vε by
∑L

�=0A�(α)ψ�, and lets L → ∞ (instead of letting ε → 0).

Indeed, the series
∑∞

�=0A�(α)ψ� diverges at some points of the boundary

for many obstacles. Note also that the coefficients in (12.7) depend on ε,

so (12.7) is not a partial sum of a series.

For the Neumann boundary condition one minimizes

∥∥∥∥∥
∂[u0 +

∑L
�=0 c�ψ�]

∂N

∥∥∥∥∥
L2(S)

with respect to c�. Analogs of Lemmas 12.1–12.3 are valid and their proofs

are essentially the same.

See [118] for an extension of these results to scattering by periodic

structures.
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12.2.2 Numerical Experiments

In this section we desribe numerical results obtained by the Random Multi-

point MRC method for 2D and 3D obstacles. We also compare the 2D

results to the ones obtained by our earlier method introduced in [34]. The

method that we used previously can be described as a Multi-point MRC.

Its difference from the Random Multi-point MRC method is twofold: It is

just the first iteration of the Random method, and the interior points xj ,

j = 1, 2, . . . , J were chosen deterministically, by an ad hocmethod according

to the geometry of the obstacle D. The number of points J was limited by

the size of the resulting numerical minimization problem, so the accuracy

of the scattering solution (i.e. the residual rmin) could not be made small

for many obstacles. The method was not capable of treating 3D obstacles.

These limitations were removed by using the Random Multi-point MRC

method. As we mentioned previously, [34] contains a favorable comparison

of the Multi-point MRC method with the BIEM, in spite of the fact that

the numerical implementation of the MRC method there is considerably

less efficient than the one presented in this paper.

A numerical implementation of the Random Multi-point MRC method

follows the same outline as for the Multi-point MRC, which was described

in [34]. In 2D case one has:

ψl(x, xj) = H
(1)
l

(
k|x− xj |

)
eilθj ,

where (x − xj)/|x− xj | = eiθj .

For a numerical implementation choose M nodes {tm} on the surface S

of the obstacle D. After the interior points xj , j = 1, 2, . . . , J are chosen,

form N vectors

a(n) =
{
ψl
(
tm, xj

)}M
m=1

,

n = 1, 2, . . . , N of length M . Note that N = (2L+ 1)J for a 2D case, and

N = (L+1)2J for a 3D case. It is convenient to normalize the norm in R
M

by

‖b‖2 = 1

M

M∑
m=1

∣∣bm∣∣2, b =
(
b1, b2, . . . , bM

)
.

Then ‖u0‖ = 1.
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Now let b = {g(tm)}Mm=1, in the Random Multi-point MRC (see section

1), and minimize

Φ(c) = ‖b+ Ac‖, (12.22)

for c ∈ C
N , where A is the matrix containing vectors a(n), n = 1, 2, . . . , N

as its columns.

We used the Singular Value Decomposition (SVD) method (see e.g. [80])

to minimize (12.22). Small singular values sn < wmin of the matrix A are

used to identify and delete linearly dependent or almost linearly dependent

combinations of vectors a(n). This spectral cut-off makes the minimization

process stable, see the details in [34].

Let rmin be the residual, i.e. the minimal value of Φ(c) attained after

Nmax iterations of the Random Multi-point MRC method (or when it is

stopped). For a comparison, let rminold be the residual obtained in [34] by an

earlier method.

We conducted 2D numerical experiments for four obstacles: two ellipses

of different eccentricity, a kite, and a triangle. The M = 720 nodes tm
were uniformly distributed on the interval [0, 2π], used to parametrize the

boundary S. Each case was tested for wave numbers k = 1.0 and k =

5.0. Each obstacle was subjected to incident waves corresponding to α =

(1.0, 0.0) and α = (0.0, 1.0).

The results for the Random Multi-point MRC with J = 1 are shown

in the first Table, in the last column rmin. In every experiment the tar-

get residual ε = 0.0001 was obtained in under 6000 iterations, in about

2 minutes run time on a 2.8 MHz PC.

In [34], we conducted numerical experiments for the same four 2D

obstacles by a Multi-point MRC, as described in the beginning of this sec-

tion. The interior points xj were chosen differently in each experiment.

Their choice is indicated in the description of each 2D experiment. The

column J shows the number of these interior points. Values L = 5 and

M = 720 were used in all the experiments. These results are shown in the

first Table, column rminold .

Thus, the Random Multi-point MRC method achieved a significant

improvement over the earlier Multi-point MRC.

Experiment 2D-I. The boundary S is an ellipse described by

r(t) = (2.0 cos t, sin t), 0 ≤ t < 2π . (12.23)
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Normalized residuals attained in the numerical experiments for 2D

obstacles, ‖u0‖ = 1.

Experiment J k α rminold rmin

I 4 1.0 (1.0, 0.0) 0.000201 0.0001

4 1.0 (0.0, 1.0) 0.000357 0.0001

4 5.0 (1.0, 0.0) 0.001309 0.0001

4 5.0 (0.0, 1.0) 0.007228 0.0001

II 16 1.0 (1.0, 0.0) 0.003555 0.0001

16 1.0 (0.0, 1.0) 0.002169 0.0001

16 5.0 (1.0, 0.0) 0.009673 0.0001

16 5.0 (0.0, 1.0) 0.007291 0.0001

III 16 1.0 (1.0, 0.0) 0.008281 0.0001

16 1.0 (0.0, 1.0) 0.007523 0.0001

16 5.0 (1.0, 0.0) 0.021571 0.0001

16 5.0 (0.0, 1.0) 0.024360 0.0001

IV 32 1.0 (1.0, 0.0) 0.006610 0.0001

32 1.0 (0.0, 1.0) 0.006785 0.0001

32 5.0 (1.0, 0.0) 0.034027 0.0001

32 5.0 (0.0, 1.0) 0.040129 0.0001

The Multi-point MRC used J = 4 interior points xj = 0.7r(π(j−1)
2 ), j =

1, . . . , 4. Run time was 2 seconds.

Experiment 2D-II. The kite-shaped boundary S (see [17], Section 3.5) is

described by

r(t) = (−0.65 + cos t+ 0.65 cos2t, 1.5 sin t), 0 ≤ t < 2π . (12.24)

The Multi-point MRC used J = 16 interior points xj = 0.9r(π(j−1)
8 ),

j = 1, . . . , 16. Run time was 33 seconds.

Experiment 2D-III. The boundary S is the triangle with vertices at

(−1.0, 0.0) and (1.0,±1.0). The Multi-point MRC used the interior points

xj = 0.9r(π(j−1)
8 ), j = 1, . . . , 16. Run time was about 30 seconds.

Experiment 2D-IV. The boundary S is an ellipse described by

r(t) = (0.1 cos t, sin t), 0 ≤ t < 2π . (12.25)
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The Multi-point MRC used J = 32 interior points xj = 0.95r(π(j−1)
16 ),

j = 1, . . . , 32. Run time was about 140 seconds.

The 3D numerical experiments were conducted for 3 obstacles: a sphere,

a cube, and an ellipsoid. We used the Random Multi-point MRC with

L = 0, wmin = 10−12, and J = 80. The number M of the points on the

boundary S is indicated in the description of the obstacles. The scattered

field for each obstacle was computed for two incoming directions αi = (θ, φ),

i = 1, 2, where φ was the polar angle. The first unit vector α1 is denoted

by (1) in the second Table, α1 = (0.0, π/2). The second one is denoted

by (2), α2 = (π/2, π/4). A typical number of iterations Niter and the run

time on a 2.8 MHz PC are also shown in the second Table. For example,

in experiment I with k = 5.0 it took about 700 iterations of the Random

Multi-point MRC method to achieve the target residual rmin = 0.001 in

7 minutes.

Experiment 3D-I. The boundary S is the sphere of radius 1, with M =

450.

Experiment 3D-II. The boundary S is the surface of the cube [−1, 1]3

with M = 1350.

Experiment 3D-III. The boundary S is the surface of the ellipsoid

x2/16 + y2 + z2 = 1 with M = 450.

Normalized residuals attained in the numerical experiments for 3D

obstacles, ‖u0‖ = 1.

Experiment k αi rmin Niter run time

I 1.0 0.0002 1 1 sec

5.0 0.001 700 7 min

II 1.0 (1) 0.001 800 16 min

1.0 (2) 0.001 200 4 min

5.0 (1) 0.0035 2000 40 min

5.0 (2) 0.002 2000 40 min

III 1.0 (1) 0.001 3600 37 min

1.0 (2) 0.001 3000 31 min

5.0 (1) 0.0026 5000 53 min

5.0 (2) 0.001 5000 53 min
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In the last experiment the run time could be reduced by taking a smaller

value for J . For example, the choice of J = 8 reduced the running time to

about 6-10 minutes.

Numerical experiments show that the minimization results depend on

the choice of such parameters as J , wmin, and L. They also depend on the

choice of the interior points xj . It is possible that further versions of the

MRC could be made more efficient by finding a more efficient rule for

their placement. Numerical experiments in [34] showed that the efficiency

of the minimization greatly depended on the deterministic placement of

the interior points, with better results obtained for these points placed

sufficiently close to the boundary S of the obstacle D, but not very close

to it. The current choice of a random placement of the interior points xj
reduced the variance in the obtained results, and eliminated the need to

provide a justified algorithm for their placement. The random choice of

these points distributes them in the entire interior of the obstacle, rather

than in a subset of it. In [37] an optimal (non-random) choice of these

points is proposed and implemented numerically.

12.2.3 Conclusions

For a 2D, or 3D obstacle, Rayleigh conjectured that the acoustic field u in

the exterior of the obstacle is given by

u(x, α) = eikα·x +
∞∑
�=0

A�(α)ψ�, ψ� := Y�(α
′)h�(kr), α′ =

x

r
. (12.26)

This conjecture, called the Rayleigh hypothesis or Rayleigh Conjecture

(RC), is false for many obstacles, but holds for some. The Modified Rayleigh

Conjecture (MRC) is Theorem 12.1, which is a basis for efficient algorithms

for solving obstacle scattering problems.

The author thinks that MRC-based algorithms are more efficient than

the ones currently used for solving obstacle scattering problems, such as

boundary integral equations methods, for example.

Further numerical evidence which testifies that the MRC-based algo-

rithms for solving obstacle scattering problems are efficient, one can find in
[37] and [125].

In the next section the MRC-based algorithm is described for static

problems.
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12.3 Modified Rayleigh Conjecture for Static Fields

Consider a bounded domain D ⊂ R
n, n = 3 with a boundary S. The

exterior domain is D′ = R
3\D. Assume that S is Lipschitz. Let S2 denotes

the unit sphere in R
3. Consider the problem:

∇2v = 0 in D′, v = f on S, (12.27)

v := O

(
1

r

)
r := |x| → ∞. (12.28)

Let x
r := α ∈ S2. Denote by Y�(α) the orthonormal spherical harmonics,

Y� = Y�m,−� ≤ m ≤ �. Let H� :=
Y�(α)
r�+1 , � ≥ 0, be harmonic functions in

D′. Let the ball BR := {x : |x| ≤ R} contain D.

In the region r > R the solution to (12.27) - (12.28) is:

v(x) =

∞∑
�=0

c�H�, r > R, (12.29)

the summation in (12.29) and below includes summation with respect to

m, −� ≤ m ≤ �, and c� are some coefficients determined by f .

In general, the series (12.29) does not converge up to the boundary S.

Our aim is to give a formulation of an analog of the Modified Rayleigh Con-

jecture (MRC) from Section 12.1, which can be used in numerical solution

of the static boundary-value problems. The author hopes that the MRC

method for static problems can be used as a basis for an efficient numeri-

cal algorithm for solving boundary-value problems for Laplace equations in

domains with complicated boundaries. In Section 12.2 such an algorithm

is developed on the basis of MRC for solving boundary-value problems for

the Helmholtz equation. Although the boundary integral equation meth-

ods and finite elements methods are widely and successfully used for solving

these problems, the method, based on MRC, proved to be competitive and

often superior to the currently used methods.

We discuss the Dirichlet condition but a similar argument is applicable

to the Neumann and Robin boundary conditions. Boundary-value problems

and scattering problems in rough domains were studied in Chapter 9.

Let us present the basic results on which the MRC method is based.

Fix ε > 0, an arbitrary small number.
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Lemma 12.4 There exist L = L(ε) and c� = c�(ε) such that

||
L(ε)∑
�=0

c�(ε)H� − f ||L2(S) ≤ ε. (12.30)

If (12.30) and the boundary condition (12.27) hold, then

||vε − v||L2(S) ≤ ε, vε :=

L(ε)∑
�=0

c�(ε)H�. (12.31)

Lemma 12.5 If (12.30) holds then

||vε − v|| = O(ε) ε→ 0, (12.32)

where || · || := || · ||Hm
loc

(D′)+ || · ||L2(D′;(1+|x|)−γ), γ > 1, m > 0 is an arbitrary

integer, and Hm is the Sobolev space.

In particular, (12.32) implies

||vε − v||L2(SR) = O(ε) ε→ 0. (12.33)

One can prove similarly to [133], p.41, that if v satisfies (12.28)-(12.29), then

maxr≥R ||v||L2(Sr) = ||v||L2(SR), where Sr := {x : |x| = r} is the sphere of

radius r ≥ R. This is an analog of the ”integral” maximum principle, which

was first established in [133], p.41, for the solutions to Helmholtz equation,

for which the ”pointwise” maximum principle is not valid.

Let us formulate an analog of the Modified Rayleigh Conjecture (MRC):

Theorem 12.2 (MRC): For an arbitrary small ε > 0 there exist L(ε)

and c�(ε), 0 ≤ � ≤ L(ε), such that (12.30) and (12.33) hold.

Theorem 12.2 follows from Lemmas 12.4 and 12.5

For the Neumann boundary condition one minimizes ||∂[
∑L

�=0 c�H�]

∂N −
f ||L2(S) with respect to c�. Analogs of Lemmas 1.1-1.2 are valid and their

proofs are essentially the same.

If the boundary data f ∈ C(S), then one can use C(S)− norm in

(12.30)-(12.33), and an analog of Theorem 12.2 then follows immediately

from the maximum principle.

Below we discuss the MRC method for solving static boundary-value

problems and give proofs of the basic results.

12.3.1 Solving boundary-value problems by MRC

To solve problem (12.27)-(12.28) using MRC, fix a small ε > 0 and find L(ε)

and c�(ε) such that (12.30) holds. This is possible by Lemma 12.4 and can
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be done numerically by minimizing ||∑L
0 c�H� − f ||L2(S) := φ(c1, ....., cL).

If the minimum of φ is larger than ε, then increase L and repeat the mini-

mization. Lemma 12.4 guarantees the existence of such L and c� that the

minimum is less than ε. Choose the smallest L for which this happens

and define vε :=
∑L
�=0 c�H�. Then, by Lemma 12.5, vε is the approximate

solution to problem (1.1)-(1.2) with the accuracy O(ε) in the norm || · ||.

12.3.2 Proofs

Proof of Lemma 12.4. We start with the claim:

Claim: the restrictions of harmonic functions H� on S form a total set

in L2(S).

Lemma 12.4 follows from this claim. Let us prove the claim. Assume

the contrary. Then there is a function g 
= 0 such that
∫
S
g(s)H�(s)ds = 0

∀� ≥ 0. This implies V (x) :=
∫
S
g(s)|x − s|−1ds = 0 ∀x ∈ D′. Thus

V = 0 on S, and since ΔV = 0 in D, one concludes that V = 0 in D. Thus

g = 0 by the jump formula for the normal derivatives of the simple layer

potential V . This contradiction proves the claim. Lemma 1.1 is proved.

�

Proof of Lemma 12.5 By Green’s formula one has

wε(x) =

∫
S

wε(s)GN (x, s)ds, ‖wε‖L2(S) < ε, wε := vε − v. (12.34)

Here N is the unit normal to S, pointing into D′, and G is the Dirichlet

Green’s function of the Laplacian in D′:

∇2G = −δ(x− y) in D′, G = 0 on S, (12.35)

G = O

(
1

r

)
, r → ∞. (12.36)

From (12.34) one gets (12.33) and (12.32) with Hm
loc(D

′)-norm immediately

by the Cauchy inequality. Estimate (12.32) in the region B′
R := R

3 \ BR
follows from the estimate

|GN (x, s)| ≤ c

1 + |x| , |x| ≥ R. (12.37)

In the region BR\D estimate (12.32) follows from local elliptic estimates

for wε := vε − v, which imply that

‖wε‖L2(BR\D) ≤ cε. (12.38)
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Let us recall the elliptic estimate we have used. Let D′
R := BR\D and SR

be the boundary of BR. Let us use the elliptic estimate for the solution to

homogeneous Laplace equation in D′
R:

‖wε‖H0.5(D′
R) ≤ c[||wε||L2(SR) + ||wε||L2(S)]. (12.39)

The estimates ||wε||L2(SR) = O(ε), ||wε||L2(S) = O(ε), and (12.39) yield

(12.32). Lemma 12.5 is proved. �
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3.1 Introduction

In this chapter, we discuss a method for creating materials with a desired refrac-
tion coefficients. This method is proposed and developed by the author and is
based on a series of his papers and on his monograph [1]. The author thinks that
these results may be new for materials science people although the results were
published in mathematical and mathematical physics Journals. This is the basic
reason for including this chapter in this book. This chapter should be useful to
materials science researchers, physicists and engineers.

Parts of this chapter are taken verbatim from the paper by the author [2]. The
author thanks Springer for permission to use verbatim parts of the author’s
paper, see also monograph [3].

There is a large literature on wave scattering by small bodies, starting from
Rayleigh’s work (1871), [4–6]. For the problem of wave scattering by one body,
an analytical solution was found only for the bodies of special shapes, for
example, for balls and ellipsoids. If the scatterer is small, then the scattered
field can be calculated analytically for bodies of arbitrary shapes, see [2, 7], and
[1] where this theory is presented.

The many-body wave scattering problem was discussed in the literature,
mostly numerically, in the cases when the number of scatterers is small or the
influence on a particular particle of the waves scattered by other particles is
negligible. This corresponds to the case when the distance d between neigh-
boring particles is much larger than the wavelength 𝜆, and the characteristic
size a of a small body (particle) is much smaller than 𝜆, that is, d ≫ 𝜆 and
a ≪ 𝜆. By k = 2𝜋

𝜆
, the wave number is denoted.

In this chapter, the much more difficult case is considered, when a ≪ d
≪ 𝜆. In this case, the influence of the scattered field on a particular particle is
essential, that is, multiple scattering effects are essential.

Mathematical Analysis and Applications: Selected Topics, First Edition.
Edited by Michael Ruzhansky, Hemen Dutta, and Ravi P. Agarwal.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

Reprinted with permission. First appeared in Mathematical Analysis and Applications:
Selected Topics, First Edition. c© 2018 John Wiley & Sons, Inc. All rights reserved.
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The derivations of the results, presented in this chapter, are rigorous. They
are taken from the earlier papers of the author, cited in the list of references.
Many formulas and arguments are taken from these papers, especially from
the paper by the author [2]. Large parts of this chapter are taken verbatim, and
monograph [1] is also used essentially. In this chapter, we do not discuss electro-
magnetic wave scattering by small bodies (particles). A detailed discussion of
electromagnetic wave scattering by small perfectly conducting and impedance
particles of an arbitrary shape is given in [1, 8], and also see [7].

A physically novel point in our theory is the following one:
While in the classical theory of wave scattering by small body of characteristic

size a (e.g., in Rayleigh’s theory) the scattering amplitude is O(a3) as a → 0,
in our theory for a small impedance particle the scattering amplitude is much
larger: it is of the order O(a2−𝜅), where a → 0 and 𝜅 ∈ [0, 1) are the parameters
(see the text below formula (3.22) in this chapter).

Can this result be used in technology?
The practical applications of the theory, presented in this chapter, are immedi-

ate provided that the important practical problem of preparing small particles
with the prescribed boundary impedance is solved.

The author thinks that an impedance boundary condition (BC) (condition
(3.7)) must be physically (experimentally) realizable if this condition guarantees
the uniqueness of the solution to the corresponding boundary problem. The
impedance BC (3.7) guarantees the uniqueness of the solution to the scattering
boundary problem (3.1)–(3.4) provided that Im𝜁1 ≤ 0.

Therefore, there should exist a practical (experimental) method for produc-
ing small particles with any boundary impedance 𝜁1 satisfying the inequality
Im𝜁1 ≤ 0.

The author asks the materials science specialists to contact him if they are
aware of a method for practical (experimental) preparing (producing) small
particles with the prescribed boundary impedance

The materials science researchers are not familiar with the author’s papers
on creating materials with a desired refraction coefficient because the author’s
theory was presented in the journals, which are not popular among materials
science researchers.

Although the author’s results were presented in many of the author’s earlier
publications, cited in references, the author hopes that they will be not only new
but practically useful for materials science researchers.

The basic results of this section consist of:

(i) Derivation of analytic formulas for the scattering amplitude for the wave
scattering problem by one small (ka ≪ 1) impedance body of an arbitrary
shape;

(ii) Solution to many-body wave scattering problem by small particles, embed-
ded in an inhomogeneous medium, under the assumptions a ≪ d ≪ 𝜆,
where d is the minimal distance between neighboring particles;
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(iii) Derivation of the equations for the limiting effective (self-consistent) field
in an inhomogeneous medium in which many small particles are embed-
ded, when a → 0 and the number M = M(a) of the small particles tends
to infinity at an appropriate rate;

(iv) Derivation of linear algebraic system (LAS) for solving many-body wave
scattering problems. These systems are not obtained in the standard way
from boundary integral equations; they have physical meaning and give an
efficient numerical method for solving many-body wave scattering prob-
lems in the case of small scatterers. In [8] for the first time, the many-body
wave scattering problems were solved for billions of particles. This was not
feasible earlier;

(v) Application of our results to creating materials with a desired refraction
coefficient.

The order of the error estimates as a → 0 is obtained. Our presentation fol-
lows very closely that in [2], but it is essentially self-contained. Our methods
give powerful numerical methods for solving many-body wave scattering prob-
lems in the case when the scatterers are small but multiple scattering effects are
essential [9–11]. In [9], the scattering problem is solved numerically for 1010

particles apparently for the first time.
In Sections 3.1–3.4 wave scattering by small impedance bodies is developed.
Let us formulate the wave scattering problems we deal with. First, let us con-

sider a one-body scattering problem. Let D1 be a bounded domain in ℝ3 with
a sufficiently smooth boundary S1. The scattering problem consists of finding
the solution to the problem:

(∇2 + k2)u = 0 in D′
1 ∶= ℝ3∖D1, (3.1)

Γu = 0 on S1, (3.2)
u = u0 + 𝑣, (3.3)

where
u0 = eik𝛼⋅x, 𝛼 ∈ S2, (3.4)

S2 is the unit sphere in ℝ3, u0 is the incident field, 𝑣 is the scattered field satis-
fying the radiation condition

𝑣r − ik𝑣 = o
(1

r

)
, r ∶= |x| → ∞, 𝑣r ∶=

𝜕𝑣
𝜕r
, (3.5)

Γu is the BC of one of the following types
Γu = Γ1u = u (Dirichlet BC), (3.6)

Γu = Γ2u = uN − 𝜁1u, Im𝜁1 ≤ 0 (impedance BC), (3.7)

where 𝜁1 is a constant, N is the unit normal to S1, pointing out of D1,
and

Γu = Γ3u = uN ( Neumann BC). (3.8)
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It is well known [12, 13] that problem (3.1)–(3.3) has a unique solution. We
now assume that

a ∶= 0.5 diamD1, ka ≪ 1, (3.9)

which is the “smallness assumption” equivalent to a ≪ 𝜆, where 𝜆 is the wave
length. We look for the solution to problem (3.1)–(3.3) of the form

u(x) = u0(x) + ∫S1

g(x, t)𝜎1(t)dt, g(x, y) ∶= eik|x−y|

4𝜋|x − y| , (3.10)

where dt is the element of the surface area of S1. One can prove that the unique
solution to the scattering problem (3.1)–(3.3) with any of the BCs (3.6)–(3.8)
can be found in the form (3.10), and the function 𝜎1 in (3.10) is uniquely defined
from the BC (3.2). The scattering amplitude A(𝛽, 𝛼) = A(𝛽, 𝛼, k) is defined by
the formula

𝑣 = eikr

r
A(𝛽, 𝛼, k) + o

(1
r

)
, r → ∞, 𝛽 ∶= x

r
. (3.11)

The equations for finding 𝜎1 are:

∫S1

g(s, t)𝜎1(t)dt = −u0(s), (3.12)

u0N − 𝜁1u0 +
A𝜎1 − 𝜎1

2
− 𝜁1∫S1

g(s, t)𝜎1(t)dt = 0, (3.13)

u0N +
A𝜎1 − 𝜎1

2
= 0, (3.14)

respectively, for conditions (3.6)–(3.8). The operator A is defined as follows:

A𝜎 ∶= 2∫S1

𝜕
𝜕Ns

g(s, t)𝜎1(t)dt. (3.15)

Equations (3.12)–(3.14) are uniquely solvable, but there are no analytic formu-
las for their solutions for bodies of arbitrary shapes. However, if the body D1 is
small, ka ≪ 1, one can rewrite (3.10) as

u(x) = u0(x) + g(x, 0)Q1 + ∫S1

[g(x, t) − g(x, 0)]𝜎1(t)dt, (3.16)

where

Q1 ∶= ∫S1

𝜎1(t)dt, (3.17)

and 0 ∈ D1 is the origin.
If ka ≪ 1, then we prove that

|g(x, 0)Q1|≫
|||||∫S1

[g(x, t) − g(x, 0)]𝜎1(t)dt
|||||
, |x| > a. (3.18)

Therefore, the scattered field is determined outside D1 by a single number Q1.
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This number can be obtained analytically without solving (3.12) and (3.13).
The case (3.14) requires a special approach by the reason discussed in detail
later.

Let us give the results for (3.12) and (3.13) first. For (3.12), one has

Q1 = ∫S1

𝜎1(t)dt = −Cu0(0)[1 + o(1)], a → 0, (3.19)

where C is the electric capacitance of a perfect conductor with the shape D1. For
(3.13), one has

Q1 = −𝜁1|S1|u0(0)[1 + o(1)], a → 0, (3.20)

where |S1| is the surface area of S1. The scattering amplitude for problem
(3.1)–(3.3) with Γ = Γ1 (acoustically soft particle) is

A1(𝛽, 𝛼) = − C
4𝜋

[1 + o(1)], (3.21)

since

u0(0) = eik𝛼⋅x|x=0 = 1.

Therefore, in this case, the scattering is isotropic and of the order O(a), because
the capacitance C = O(a).

The scattering amplitude for problem (3.1)–(3.3) with Γ = Γ2 (small
impedance particles) is:

A2(𝛽, 𝛼) = −
𝜁1|S1|

4𝜋
[1 + o(1)], (3.22)

since u0(0) = 1.
In this case, the scattering is also isotropic, and of the order O(𝜁 |S1|).
If 𝜁1 = O(1), then A2 = O(a2), because |S1| = O(a2). If 𝜁1 = O

(
1

a𝜅

)
,

𝜅 ∈ (0, 1), then A2 = O(a2−𝜅). The case 𝜅 = 1 was considered in [14].
The scattering amplitude for problem (3.1)–(3.3) with Γ = Γ3 (acoustically

hard particles) is

A3(𝛽, 𝛼) = −
k2|D1|

4𝜋
(1 + 𝛽pq𝛽p𝛼q), if u0 = eik𝛼⋅x. (3.23)

Here and below summation is understood over the repeated indices, 𝛼q = 𝛼 ⋅
eq, 𝛼 ⋅ eq denotes the dot product of two vectors in ℝ3, p, q = 1, 2, 3, {ep} is an
orthonormal Cartesian basis of ℝ3, |D1| is the volume of D1, 𝛽pq is the magnetic
polarizability tensor defined as follows [7, p. 62]:

𝛽pq ∶= 1
|D1|∫S1

tp𝜎1q(t)dt, (3.24)

𝜎1q is the solution to the equation

𝜎1q(s) = A0𝜎1q − 2Nq(s), (3.25)
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Nq(s) = N(s) ⋅ eq, N = N(s) is the unit outer normal to S1 at the point s, that
is, the normal pointing out of D1, and A0 is the operator A at k = 0. For small
bodies, ||A − A0|| = o(ka).

If u0(x) is an arbitrary field satisfying (3.1), not necessarily the plane wave
eik𝛼⋅x, then

A3(𝛽, 𝛼) =
|D1|
4𝜋

(
ik𝛽pq

𝜕u0

𝜕xq
𝛽p + Δu0

)
. (3.26)

The above formulas are derived in Section 3.2. In Section 3.3 we develop a
theory for many-body wave scattering problem and derive the equations for
effective field in the medium, in which many small particles are embedded, as
a → 0.

The results, presented in this chapter, are based on the earlier works of the
author [1, 2, 7, 9, 12–34]. These results and methods of their derivation differ
much from those published by other authors.

Our approach to homogenization-type theory is also different from the
approaches of other authors [35, 36]. The differences are:

(i) no periodic structure in the problems is assumed,
(ii) the operators in our problems are non-selfadjoint and have continuous

spectrum,
(iii) the limiting medium is not homogeneous and its parameters are not

periodic,
(iv) the technique for passing to the limit is different from the one used in

homogenization theory.

Let us summarize the results for one-body wave scattering.

Theorem 3.1 The scattering amplitude for the problem (3.1)–(3.4) for small
body of an arbitrary shape is given by formulas (3.25)–(3.27), for the BCsΓ1–Γ3,
respectively.

3.2 Derivation of the Formulas for One-Body Wave
Scattering Problems

Let us recall the known result [12]

𝜕
𝜕N−

s ∫S1

g(x, t)𝜎1(t)dt =
A𝜎1 − 𝜎1

2
(3.27)

concerning the limiting value of the normal derivative of single-layer potential
from outside. Let xm ∈ Dm, t ∈ Sm, Sm is the surface of Dm, a = 0.5 diamDm.

In this section m = 1, and xm = 0 is the origin.
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We assume that ka ≪ 1, ad−1 ≪ 1, so |x − xm| = d ≫ a. Then
eik|x−t|

4𝜋|x − t| =
eik|x−xm|

4𝜋|x − xm|e−ik(x−xm)o⋅(t−xm)
(

1 + O
(

ka + a
d

))
, (3.28)

k|x − t| = k|x − xm| − k(x − xm)o ⋅ (t − xm) + O
(

ka2

d

)
, (3.29)

where

d = |x − xm|, (x − xm)o ∶=
x − xm

|x − xm| ,
and

|x − t|
|x − xm| = 1 + O

(a
d

)
. (3.30)

Let us derive estimate (3.19). Since |t| ≤ a on S1, one has

g(s, t) = g0(s, t)(1 + O(ka)),

where g0(s, t) =
1

4𝜋|s−t| . Since u0(s) is a smooth function, one has |u0(s) −
u0(0)| = O(a). Consequently, (3.12) can be considered as an equation for
electrostatic charge distribution 𝜎1(t) on the surface S1 of a perfect conductor
D1, charged to the constant potential −u0(0) (up to a small term of the order
O(ka)). It is known that the total charge Q1 = ∫S1

𝜎1(t)dt of this conductor is
equal to

Q1 = −Cu0(0)(1 + O(ka)), (3.31)

where C is the electric capacitance of the perfect conductor with the shape D1.
Analytic formulas for electric capacitance C of a perfect conductor of an arbi-

trary shape, which allow to calculate C with a desired accuracy, are derived in
[7]. For example, the zeroth approximation formula is:

C(0) =
4𝜋|S1|2
∫S1

∫S1

dsdt
rst

, rst = |t − s|, (3.32)

and we assume in (3.32) that 𝜖0 = 1, where 𝜖0 is the dielectric constant of the
homogeneous medium in which the perfect conductor is placed. Formula (3.31)
is formula (3.19). If u0(x) = eik𝛼⋅x, then u0(0) = 1, and Q1 = −C(1 + O(ka)). In
this case,

A1(𝛽, 𝛼) =
Q1

4𝜋
= − C

4𝜋
[1 + O(ka)],

which is formula (3.21).
Consider now wave scattering by an impedance particle.
Let us derive formula (3.20). Integrate (3.13) over S1, use the divergence

formula

∫S1

u0N ds = ∫D1

∇2u0dx = −k2∫D1

u0dx = k2|D1|u0(0)[1 + o(1)], (3.33)
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where |D1| = O(a3), and the formula

−𝜁1∫S1

u0ds = −𝜁1|S1|u0(0)[1 + o(1)], (3.34)

which is valid because the body D1 is small: in this case, u0(s) ≈ u0(0).
Furthermore |∫S1

g(s, t)ds| = O(a), so

𝜁1∫S1

ds∫S1

g(s, t)𝜎1(t)dt = O(aQ1). (3.35)

Therefore, the term (3.35) is negligible compared with Q1 as a → 0. Finally, if
ka ≪ 1, then g(s, t) = g0(s, t)(1 + ik|s − t| + · · · ), and

𝜕
𝜕Ns

g(s, t) = 𝜕
𝜕Ns

g0(s, t)[1 + O(ka)]. (3.36)

Denote by A0 the operator

A0𝜎 = 2∫S1

𝜕g0(s, t)
𝜕Ns

𝜎1(t)dt. (3.37)

It is known from the potential theory [1] that

∫S1

A0𝜎1ds = −∫S1

𝜎1(t)dt, 2∫S1

𝜕g0(s, t)
𝜕Ns

ds = −1, t ∈ S1. (3.38)

Therefore,

∫S1

ds
A𝜎1 − 𝜎1

2
= −Q1[1 + O(ka)]. (3.39)

Consequently, from formulas (3.33)–(3.39), one gets formula (3.22).
One can see that the wave scattering by an impedance particle is isotropic,

and the scattered field is of the order O(𝜁1|S1|). Since |S1| = O(a2), one has
O(𝜁1|S1|) = O(a2−𝜅) if 𝜁1 = O

(
1

a𝜅

)
, 𝜅 ∈ [0, 1).

Consider now wave scattering by an acoustically hard small particle, that is,
the problem with the Neumann BC.

In this case, we will prove that:

(i) The scattering is anisotropic,
(ii) It is defined not by a single number, as in the previous two cases, but by a

tensor, and
(iii) The order of the scattered field is O(a3) as a → 0, for a fixed k > 0, that is,

the scattered field is much smaller than in the previous two cases.

Integrating over S1 (3.14), one gets

Q1 = ∫D1

∇2u0dx = ∇2u0(0)|D1|[1 + o(1)], a → 0. (3.40)

Thus, Q1 = O(a3). Therefore, the contribution of the term e−ikxo⋅t in formula
(3.28) with xm = 0 will be also of the order O(a3) and should be taken into
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account, in contrast to the previous two cases. Namely,

u(x) = u0(x) + g(x, 0)∫S1

e−ik𝛽⋅t𝜎1(t)dt, 𝛽 ∶= x
|x| = xo. (3.41)

One has

∫S1

e−ik𝛽⋅t𝜎1(t)dt = Q1 − ik𝛽p∫S1

tp𝜎1(t)dt, (3.42)

where the terms of higher order of smallness are neglected and summation over
index p is understood. The function 𝜎1 solves (3.14):

𝜎1 = A𝜎1 + 2u0N = A𝜎1 + 2ik𝛼qNqu0(s), s ∈ S1 (3.43)

if u0(x) = eik𝛼⋅x.
Comparing (3.43) with (3.25), using (3.24), and taking into account that

ka ≪ 1, one gets

−ik𝛽p∫S1

tp𝜎1(t)dt = −ik𝛽p|D1|𝛽pq(−ik𝛼q)u0(0)[1 + O(ka)]

= −k2|D1|𝛽pq𝛽p𝛼qu0(0)[1 + O(ka)].
(3.44)

From (3.40), (3.42), and (3.44), one gets formula (3.23), because ∇2u0 = −k2u0.
If u0(x) is an arbitrary function, satisfying (3.1), then ik𝛼q in (3.43) is replaced

by 𝜕u0

𝜕xq
, and −k2u0 = Δu0, which yields formula (3.26).

This completes the derivation of the formulas for the solution of scalar wave
scattering problem by one small body on the boundary, of which the Dirichlet,
or the impedance, or the Neumann boundary condition is imposed.

3.3 Many-Body Scattering Problem

In this section we assume that there are M = M(a) small bodies (particles)
Dm, 1 ≤ m ≤ M, a = 0.5max diamDm, ka ≪ 1. The distance d = d(a) between
neighboring bodies is much larger than a, d ≫ a, but we do not assume that
d ≫ 𝜆, so there may be many small particles on the distances of the order of the
wavelength 𝜆.

This means that our medium with the embedded particles is not necessarily
diluted.

We assume that the small bodies are embedded in an arbitrary large but finite
domain D, D ⊂ ℝ3, so Dm ⊂ D. Denote D′ ∶= ℝ3∖D and Ω ∶= ∪M

m=1Dm, Sm ∶=
𝜕Dm, 𝜕Ω = ∪M

m=1Sm. By N , we denote a unit normal to 𝜕Ω, pointing out of Ω;
and by |Dm| the volume of the body Dm is denoted.

The scattering problem consists of finding the solution to the following prob-
lem

(∇2 + k2)u = 0 in ℝ3∖Ω, (3.45)
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Γu = 0 on 𝜕Ω, (3.46)
u = u0 + 𝑣, (3.47)

where u0 is the incident field, satisfying (3.45) in ℝ3, for example, u0 = eik𝛼⋅x,
𝛼 ∈ S2, and 𝑣 is the scattered field, satisfying the radiation condition (3.5). The
BC (3.46) can be of the types (3.6)–(3.8).

In the case of impedance BC (3.7), we assume that

uN = 𝜁mu on Sm, 1 ≤ m ≤ M, (3.48)

so the impedance may vary from one particle to another. We assume that

𝜁m =
h(xm)

a𝜅
, 𝜅 ∈ (0, 1), (3.49)

where xm ∈ Dm is a point in Dm, and h(x), x ∈ D, is a given function, which we
can choose as we wish, subject to the condition Imh(x) ≤ 0. For simplicity, we
assume that h(x) is a continuous function.

Let us make the following assumption about the distribution of small parti-
cles:

If Δ ⊂ D is an arbitrary open subset of D, then the number  (Δ) of small
particles in Δ, assuming the impedance BC, is:

𝜁 (Δ) =
1

a2−𝜅 ∫Δ
N(x)dx[1 + o(1)], a → 0, (3.50)

where N(x) ≥ 0 is a given function.
If the Dirichlet BC is assumed, then

D(Δ) =
1
a∫Δ

N(x)dx[1 + o(1)], a → 0. (3.51)

The case of the Neumann BC will not be considered in this chapter, see [2].
We look for the solution to problem (3.45)–(3.47) with the Dirichlet BC of

the form

u = u0 +
M∑

m=1
∫Sm

g(x, t)𝜎m(t)dt, (3.52)

where 𝜎m(t) are some functions to be determined from the boundary condition
(3.46). It is proved in [14] that problem (3.45)–(3.47) has a unique solution of the
form (3.52). For any 𝜎m(t), function (3.52) solves (3.45) and satisfies condition
(3.47). The BC (3.46) determines 𝜎m uniquely. However, if M ≫ 1, then numeri-
cal solution of the system of integral equations for 𝜎m, where 1 ≤ m ≤ M, which
one gets from the BC (3.52), is practically not feasible.

To avoid this principal difficulty, we prove that the solution to scattering prob-
lem (3.45)–(3.47) is determined by M numbers

Qm ∶= ∫Sm

𝜎m(t)dt, (3.53)
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rather than M functions 𝜎m(t). This allows one to drastically reduce the com-
plexity of the numerical solution of the many-body scattering problems in the
case of small particles.

This is possible to prove that if the particles Dm are small. We derive analytical
formulas for Qm as a → 0.

Let us define the effective (self-consistent) field ue(x) = u(j)
e (x), acting on the

j-th particle, by the formula

ue(x) ∶= u(x) − ∫Sj

g(x, t)𝜎j(t)dt, |x − xj| ∼ a. (3.54)

Physically, this field acts on the j−th particle and is a sum of the incident field
and the fields acting from all other particles:

ue(x) = u(j)
e (x) ∶= u0(x) +

∑
m≠j

∫Sm

g(x, t)𝜎m(t)dt. (3.55)

Let us rewrite (3.55) as follows:

ue(x) = u0(x) +
M∑

m≠j
g(x, xm)Qm +

M∑
m≠j

∫Sm

[g(x, t) − g(x, xm)]𝜎m(t)dt. (3.56)

We want to prove that the last sum is negligible compared with the first one as
a → 0.

To prove this, let us give some estimates. One has |t − xm| ≤ a, d =
|x − xm|,

|g(x, t) − g(x, xm)| = max
{

O
( a

d2

)
,O

(
ka
d

)}
, |g(x, xm)| = O(1∕d).

(3.57)

Therefore, if |x − xj| = O(a), then

|||∫Sm
[g(x, t) − g(x, xm)]𝜎m(t)dt|||

|g(x, xm)Qm| ≤ O(ad−1 + ka). (3.58)

One can also prove that

J1∕J2 = O(ka + ad−1), (3.59)

where J1 is the first sum in (3.56) and J2 is the second sum in (3.56). Therefore,
at any point x ∈ Ω′ = ℝ3∖Ω, one has

ue(x) = u0(x) +
M∑

m=1
g(x, xm)Qm, x ∈ Ω′, (3.60)

where the terms of higher order of smallness are omitted.
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3.3.1 The Case of Acoustically Soft Particles

If (3.46) is the Dirichlet condition, then, as we have proved in Section 3.2
(see formula (3.31)), one has

Qm = −Cmue(xm). (3.61)

Thus,

ue(x) = u0(x) −
M∑

m=1
g(x, xm)Cmue(xm), x ∈ Ω′. (3.62)

One has

u(x) = ue(x) + o(1), a → 0, (3.63)

so the full field and effective field are practically the same.
Let us write a LAS for finding unknown quantities ue(xm):

ue(xj) = u0(xj) −
M∑

m≠j
g(xj, xm)Cmue(xm). (3.64)

If M is not very large, say M = O(103), then LAS (3.64) can be solved numeri-
cally, and formula (3.62) can be used for calculation of ue(x).

Consider the limiting case, when a → 0. One can rewrite (3.64) as follows:

ue(𝜉q) = u0(𝜉q) −
P∑

p≠q
g(𝜉q, 𝜉p)ue(𝜉p)

∑
xm∈Δp

Cm, (3.65)

where {Δp}P
p=1 is a union of cubes which forms a covering of D,

max
p

diamΔp ∶= b = b(a)≫ a,

lim
a→0

b(a) = 0. (3.66)

By |Δp| we denote the volume (measure) of Δp, and 𝜉p is the center of Δp, or a
point xp in an arbitrary small body Dp, located in Δp. Let us assume that there
exists the limit

lim
a→0

∑
xm∈Δp

Cm

|Δp| = C(𝜉p), 𝜉p ∈ Δp. (3.67)

For example, one may have

Cm = c(𝜉p)a (3.68)

for all m such that xm ∈ Δp, where c(x) is some function in D. If all Dm are balls
of radius a, then c(x) = 4𝜋. We have∑

xm∈Δp

Cm = Cpa (Δp) = CpN(𝜉p)|Δp|[1 + o(1)], a → 0, (3.69)
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so limit (3.67) exists, and

C(𝜉p) = c(𝜉p)N(𝜉p). (3.70)

From (3.65), (3.68)–(3.70), one gets

ue(𝜉q) = u0(𝜉q) −
∑
p≠q

g(𝜉q, 𝜉p)c(𝜉p)N(𝜉p)ue(𝜉p)|Δp|, 1 ≤ p ≤ P. (3.71)

LAS (3.71) can be considered as the collocation method for solving integral
equation

u(x) = u0(x) − ∫D
g(x, y)c(y)N(y)u(y)dy. (3.72)

It is proved in [30] that
System (3.71) is uniquely solvable for all sufficiently small b(a), and the

function

uP(x) ∶=
P∑

p=1
𝜒p(x)ue(𝜉p) (3.73)

converges in L∞(D) to the unique solution of equation (3.72).
The function 𝜒p(x) in (3.73) is the characteristic function of the cube Δp:

it is equal to 1 in Δp and vanishes outside Δp. Thus, if a → 0, the solution to
the many-body wave scattering problem in the case of the Dirichlet BC is well
approximated by the unique solution of the integral equation (3.72).

Applying the operator L0 ∶= ∇2 + k2 to (3.72), and using the formula
L0g(x, y) = −𝛿(x − y), where 𝛿(x) is the delta-function, one gets

∇2u + k2u − q(x)u = 0 in ℝ3, q(x) ∶= c(x)N(x). (3.74)

The physical conclusion is:
If one embeds M(a) = O(1∕a) small acoustically soft particles, which are dis-

tributed as in (3.51), then one creates, as a → 0, a limiting medium, which is
inhomogeneous and has a refraction coefficient n2(x) = 1 − k−2q(x).

It is interesting from the physical point of view to note that
The limit, as a → 0, of the total volume of the embedded particles is zero.
Indeed, the volume of one particle is O(a3), the total number M of the embed-

ded particles is O(a3M) = O(a2), and lima→0O(a2) = 0.
The second observation is: if (3.51) holds, then on a unit length straight line,

there are O
(

1
a1∕3

)
particles, so the distance between neighboring particles is

d = O(a1∕3). If d = O(a𝛾 ) with 𝛾 > 1
3
, then the number of the embedded parti-

cles in a subdomain Δp is O
(

1
d3

)
= O(a−3𝛾 ). In this case, for 3𝛾 > 1, the limit

in (3.69) is C(𝜉p) = lima→0cpaO(a−3𝛾 ) = ∞. Therefore, the product of this limit
by u remains finite only if u = 0 in D. Physically, this means that if the distances
between neighboring perfectly soft particles are smaller than O(a1∕3), namely,
they are O(a𝛾 ) with any 𝛾 > 1

3
, then u = 0 in D.
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On the other hand, if 𝛾 < 1
3
, then the limit C(𝜉p) = 0, and u = u0 in D, so that

the embedded particles do not change, in the limit a → 0, the properties of the
medium.

This concludes our discussion of the scattering problem for many acoustically
soft particles.

3.3.2 Wave Scattering by Many Impedance Particles

We assume now that (3.49) and (3.50) hold, use the exact BC (3.46) with Γ = Γ2,
that is,

ueN − 𝜁mue +
Am𝜎m − 𝜎m

2
− 𝜁m∫Sm

g(s, t)𝜎m(t)dt = 0, (3.75)

and integrate (3.75) over Sm in order to derive an analytical asymptotic formula
for Qm = ∫Sm

𝜎m(t)dt.
We have

∫Sm

ueN ds = ∫Dm

∇2uedx = O(a3), (3.76)

∫Sm

𝜁mue(s)ds = h(xm)a−𝜅|Sm|ue(xm)[1 + o(1)], a → 0, (3.77)

∫Sm

Am𝜎m − 𝜎m

2
ds = −Qm[1 + o(1)], a → 0, (3.78)

and

𝜁m∫Sm
∫Sm

g(s, t)𝜎m(t)dt = h(xm)a1−𝜅Qm = o(Qm), 0 < 𝜅 < 1. (3.79)

From (3.75) to (3.79), one finds
Qm = −h(xm)a2−𝜅|Sm|a−2ue(xm)[1 + o(1)]. (3.80)

This yields the formula for the approximate solution to the wave scattering
problem for many impedance particles:

u(x) = u0(x) − a2−𝜅
M∑

m=1
g(x, xm)bmh(xm)ue(xm)[1 + o(1)], (3.81)

where
bm ∶= |Sm|a−2

are some positive numbers which depend on the geometry of Sm and are inde-
pendent of a. For example, if all Dm are balls of radius a, then bm = 4𝜋.

A LAS for ue(xm), analogous to (3.64), is

ue(xj) = u0(xj) − a2−𝜅
M∑

m=1,m≠j
g(xj, xm)bmh(xm)ue(xm). (3.82)
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The integral equation for the limiting effective field in the medium with embed-
ded small particles, as a → 0, is

u(x) = u0(x) − b∫D
g(x, y)N(y)h(y)u(y)dy, (3.83)

where

u(x) = lim
a→0

ue(x), (3.84)

and we have assumed in (3.83) for simplicity that bm = b for all m, that is, all
small particles are of the same size.

Applying operator L0 = ∇2 + k2 to equation (3.83), one finds the differential
equation for the limiting effective field u(x):

(∇2 + k2 − bN(x)h(x))u = 0 in ℝ3, (3.85)

and u satisfies condition (3.47).
The conclusion is: the limiting medium is inhomogeneous, and its properties

are described by the function

q(x) ∶= bN(x)h(x). (3.86)

This concludes our discussion of the wave scattering problem with many
small impedance particles.

3.4 Creating Materials with a Desired Refraction
Coefficient

Since the choice of the functions N(x) ≥ 0 and h(x), Imh(x) ≤ 0, is at
our disposal, we can create the medium with a desired refraction coef-
ficient by embedding many small impedance particles, with suitable
impedances, according to the distribution law (3.50) with a suitable N(x). The
function

n2
0(x) − k−2q(x) = n2(x) (3.87)

is the refraction coefficient of the limiting medium, where n2
0(x) is the refraction

coefficient of the original medium (see also Section 3.5). In (3.85), it is assumed
that n2

0(x) = 1. If n2
0(x) ≠ 1, then the operator L0 = ∇2 + k2n2

0(x).
A recipe for creating material with a desired refraction coefficient can now

be formulated.
Given a desired refraction coefficient n2(x), Imn2(x) ≥ 0, one can find N(x)

and h(x) so that (3.87) holds, where q(x) is defined in (3.86), that is, one can
create a material with a desired refraction coefficient by embedding into a given
material many small particles with suitable boundary impedances and suitable
distribution law.
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3.5 Scattering by Small Particles Embedded in an
Inhomogeneous Medium

Suppose that the operator ∇2 + k2 in (3.1) and in (3.45) is replaced by the oper-
ator L0 = ∇2 + k2n2

0(x), where n2
0(x) is a known function,

Im n2
0(x) ≥ 0. (3.88)

The function n2
0(x) is the refraction coefficient of an inhomogeneous medium in

which many small particles are embedded. The results, presented in Sections
3.1–3.3 remain valid if one replaces function g(x, y) by the Green’s function
G(x, y),

[∇2 + k2n2
0(x)]G(x, y) = −𝛿(x − y), (3.89)

satisfying the radiation condition. We assume that

n2
0(x) = 1 in D′ ∶= ℝ3∖D. (3.90)

The function G(x, y) is uniquely defined [14]. The derivations of the results
remain essentially the same because

G(x, y) = g0(x, y)[1 + O(|x − y|)], |x − y| → 0, (3.91)

where g0(x, y) =
1

4𝜋|x−y| . Estimates of G(x, y) as |x − y| → 0 and as |x − y| → ∞

are obtained in [14]. Smallness of particles in an inhomogeneous medium with
refraction coefficient n2

0(x) is described by the relation kn0a ≪ 1, where n0 ∶=
maxx∈D|n0(x)|, and a = max1≤m≤MdiamDm.

3.6 Conclusions

Analytic formulas for the scattering amplitudes for wave scattering by a sin-
gle small particle are derived for small acoustically soft, or hard, or impedance
particles.

The equation for the effective field in the medium, in which many small par-
ticles are embedded, is derived in the limit a → 0. The physical assumptions
a ≪ d ≪ 𝜆 are such that the multiple scattering effects are essential. The deriva-
tions are rigorous.

On the basis of the developed theory, efficient numerical methods are pro-
posed for solving many-body wave scattering problems in the case of small
scatterers. These methods allow one to solve the problems, which earlier were
not possible to solve.

A method for creating materials with a desired refraction coefficient is given
and rigorously justified. Its practical implementation requires development of
a method for preparing small particles with prescribed boundary impedances.
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The physically novel point, compared with the known results for wave scatter-
ing by small bodies, is the dependence on the size a of the small scatterer, which
is much larger than O(a3), the Rayleigh-type dependence, see, for example,
formula (3.22), where the dependence on a is O(𝜁 |S1|) = O(a2−𝜅). The formu-
las for the wave scattering by small particles of an arbitrary shape for various
types of the boundary conditions are new. The equations for the effective field
in the medium, in which many small particles with various BCs are embedded,
are new.

In this chapter, we did not discuss the EM (electromagnetic waves) scatter-
ing and the related problems of creating materials with a desired refraction
coefficient [1, 8, 37].

References

1 Ramm, A.G. (2013) Scattering of acoustic and electromagnetic waves by
small bodies of arbitrary shapes, in Applications to Creating New Engineered
Materials, Momentum Press, New York.

2 Ramm, A.G. (2013) Many-body wave scattering problems in the case of
small scatterers. J. Appl. Math Comput., 41 (1–2), 473–500.

3 Ramm, A.G. (2017) Creating materials with a desired refraction coefficient,
IOP Concise Physics, Morgan and Claypool Publishers, San Rafael, CA,
USA.

4 Rayleigh, J. (1992) Scientific Papers, Cambridge University Press, Cambridge.
5 Landau, L. and Lifschitz, L. (1984) Electrodynamics of Continuous Media,

Pergamon Press, Oxford.
6 van de Hulst, H.C. (1961) Light Scattering by Small Particles, Dover

Publications, New York.
7 Ramm, A.G. (2005) Wave Scattering by Small Bodies of Arbitrary Shapes,

World Science Publishers, Singapore.
8 Ramm, A.G. (2015) Scattering of EM waves by many small perfectly con-

ducting or impedance bodies. J. Math. Phys., 56 (N9), 091901.
9 Ramm, A.G. and Tran, N. (2015) A fast algorithm for solving scalar wave

scattering problem by billions of particles. J. Algorithms Optim., 3 (1), 1–13.
10 Andriychuk, M. and Ramm, A.G. (2011) Numerical solution of many-body

wave scattering problem for small particles and creating materials with
desired refraction coefficient, Chapter in the book Numerical Simulations
of Physical and Engineering Processes, (edited by J. Awrejcewicz), InTech,
Vienna, pp. 1–28. ISBN: 978-953-307-620-1.

11 Andriychuk, M. and Ramm, A.G. (2012) Scattering of electromagnetic
waves by many thin cylinders: theory and computational modeling. Opt.
Commun., 285 (20), 4019–4026.

12 Ramm, A.G. (1986) Scattering by Obstacles, D. Reidel, Dordrecht.

Appendix A1: Many-Body Wave Scattering Problems for Small Scatterers 237



74 Mathematical Analysis and Applications

13 Ramm, A.G. (2017) Scattering by obstacles and potentials, World Sci.
Publishers, Singapore.

14 Ramm, A.G. (2007) Many-body wave scattering by small bodies and
applications. J. Math. Phys., 48, 103511.

15 Ramm, A.G. (2007) Scattering by many small bodies and applications to
condensed matter physics. Eur. Phys. Lett., 80, 44001.

16 Ramm, A.G. (2007) Wave scattering by small particles in a medium. Phys.
Lett. A, 367, 156–161.

17 Ramm, A.G. (2007) Wave scattering by small impedance particles in a
medium. Phys. Lett. A, 368, 164–172.

18 Ramm, A.G. (2007) Distribution of particles which produces a ”smart”
material. J. Stat. Phys., 127, 915–934.

19 Ramm, A.G. (2007) Distribution of particles which produces a desired radi-
ation pattern. Physica B, 394, 253–255.

20 Ramm, A.G. (2008) Creating wave-focusing materials. LAJSS (Lat.-Am. J.
Solids Struct.), 5, 119–127.

21 Ramm, A.G. (2008) Electromagnetic wave scattering by small bodies. Phys.
Lett. A, 372, 4298–4306.

22 Ramm, A.G. (2008) Wave scattering by many small particles embedded in a
medium. Phys. Lett. A, 372, 3064–3070.

23 Ramm, A.G. (2009) Preparing materials with a desired refraction coef-
ficient and applications, in the book “Topics in Chaotic Systems: Selected
Papers from Chaos 2008 International Conference” (eds C. Skiadas and I.
Dimotikalis), World Science Publishing, pp. 265–273.

24 Ramm, A.G. (2009) Preparing materials with a desired refraction coefficient.
Nonlinear Anal. Theory Methods Appl., 70, e186–e190.

25 Ramm, A.G. (2009) Creating desired potentials by embedding small inho-
mogeneities. J. Math. Phys., 50, 123525.

26 Ramm, A.G. (2010) A method for creating materials with a desired refrac-
tion coefficient. Int. J. Mod. Phys. B, 24, 5261–5268.

27 Ramm, A.G. (2010) Materials with a desired refraction coefficient can be
created by embedding small particles into the given material. Int. J. Struct.
Changes Solids (IJSCS), 2, 17–23.

28 Ramm, A.G. (2011) Wave scattering by many small bodies and creating
materials with a desired refraction coefficient. Afr. Mat., 22, 33–55.

29 Ramm, A.G. (2011) Scattering by many small inhomogeneities and applica-
tions, in the book “Topics in Chaotic Systems: Selected Papers from Chaos
2010 International Conference” (eds C. Skiadas and I. Dimotikalis), World
Science Publishing, pp. 41–52.

30 Ramm, A.G. (2010) Collocation method for solving some integral equations
of estimation theory. Int. J. Pure Appl. Math., 62, 57–65.

31 Ramm, A.G. (2011) Scattering of scalar waves by many small particles. AIP
Adv., 1, 022135.

238 Wave Scattering Theory for Small Bodies of Arbitrary Shapes



Many-Body Wave Scattering Problems for Small Scatterers and Creating Materials 75

32 Ramm, A.G. (2011) Scattering of electromagnetic waves by many thin cylin-
ders. Results Phys., 1 (1), 13–16.

33 Ramm, A.G. (2012) Electromagnetic wave scattering by many small per-
fectly conducting particles of an arbitrary shape. Opt. Commun., 285 (18),
3679–3683.

34 Ramm, A.G. (2013) Wave scattering by many small bodies: transmission
boundary conditions. Rep. Math. Phys., 71 (3), 279–290.

35 Jikov, V., Kozlov, S., and Oleinik, O. (1994) Homogenization of Differential
Operators and Integral Functionals, Springer-verlag, Berlin.

36 Marchenko, V. and Khruslov, E. (2006) Homogenization of Partial Differen-
tial Equations, Birkhäuser, Boston, MA.

37 Ramm, A.G. (2013) Scattering of electromagnetic waves by many
nano-wires. Mathematics, 1, 89–99.

Appendix A1: Many-Body Wave Scattering Problems for Small Scatterers 239



This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



Appendix A2

Vol. 90 (2022) REPORTS ON MATHEMATICAL PHYSICS No. 2

WAVE SCATTERING BY MANY SMALL IMPEDANCE PARTICLES
AND APPLICATIONS

Alexander G. Ramm
Department of Mathematics, Kansas State University,

Manhattan, KS 66506-2602, USA
(e-mail: ramm@ksu.edu)

(Received December 13, 2021 — Revised April 11, 2022)

Formulas are derived for solutions of many-body wave scattering problem by small impedance
particles embedded in a homogeneous medium. The limiting case is considered, when the size
𝑎 of small particles tends to zero while their number tends to infinity at a suitable rate. The
basic physical assumption is 𝑎 � 𝑑 � 𝜆, where 𝑑 is the minimal distance between neighboring
particles, 𝜆 is the wavelength, and the particles can be impedance balls 𝐵 (𝑥𝑚, 𝑎) with centers
𝑥𝑚 located on a grid. Equations for the limiting effective (self-consistent) field in the medium
are derived. It is proved that one can create material with a desired refraction coefficient by
embedding in a free space many small balls of radius 𝑎 with prescribed boundary impedances.
The small balls can be centered at the points located on a grid. A recipe for creating materials
with a desired refraction coefficient is formulated. It is proved that materials with a desired
radiation pattern, for example, wave-focusing materials, can be created.
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1. Introduction
There is a large literature on wave scattering by small bodies, starting from

Rayleigh’s work (1871), [1, 2, 36]. For the problem of wave scattering by one body
an analytical solution was found only for the bodies of special shapes, for example,
for balls and ellipsoids. If the scatterer is small then the scattered field can be
calculated analytically for bodies of arbitrary shapes, see [5], where this theory is
presented.
The many-body wave scattering problem was discussed in the literature mostly

numerically, if the number of scatterers is small, or under the assumption that
the influence of the waves, scattered by other particles on a particular particle
is negligible (see [3], where one finds a large bibliography, 1386 entries). This
corresponds to the case when the distance 𝑑 between neighboring particles is much
larger than the wavelength 𝜆, and the characteristic size 𝑎 of a small body (particle)
is much smaller than 𝜆. Theoretically and practically the assumptions 𝑎 � 𝜆, 𝑑 >> 𝜆
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194 A. G. RAMM

are the simplest and they allow to neglect multiple scattering. By 𝑘 2𝜋
𝜆
the wave

number is denoted.
In contrast, in our theory the basic assumption is 𝑎 𝑑 𝜆, and the multiple

scattering is of basic importance. We give references to our papers and monographs
in which the theory of wave scattering by small bodies of arbitrary shapes was
developed under the assumption 𝑎 𝑑 𝜆, [4–34]. The novelty of the results in
this paper is in the location of the small bodies: they are placed on a grid. This
may be of practical interest. In [35] for the first time the scattering problem for 10
billions small particles is solved numerically and numerical results are presented.
This paper is a presentation of the new results under simplifying assumptions:

the small particles 𝐷𝑚 𝐵 𝑥𝑚, 𝑎 , 1 𝑚 𝑀 , are impedance balls with prescribed
boundary impedances 𝜁𝑚; the centers 𝑥𝑚 of the balls are placed on a grid and are
embedded in a homogeneous space in a bounded domain 𝐷, for example, in a box.
The basic results of this paper consist of:
i) Solution to many-body wave scattering problem by small impedance particles,

embedded in a homogeneous medium, under the assumptions 𝑎 𝑑 𝜆, where 𝑑

is the minimal distance between neighboring particles and 𝜆 is the wavelength in
this medium.
ii) Derivation of the equations for the limiting effective (self-consistent) field in

this medium, in which many small impedance particles are embedded, when 𝑎 0
and the number 𝑀 𝑀 𝑎 of the small particles tends to infinity at an appropriate
rate.
iii) Derivation of linear algebraic systems (LAS) for solving many-body wave

scattering problems. These systems are not obtained by a discretization of boundary
integral equations, and they give an efficient numerical method for solving many-
body wave scattering problems in the case of small scatterers under the assumption
𝑎 𝑑 𝜆.
iv) Formulation of a recipe for creating materials with a desired refraction

coefficient.
v) Formulation of a method for creating materials with a desired radiation pattern.
Our methods give powerful numerical methods for solving many-body wave

scattering problems in the case when the scatterers are small (see [31]).
Let us formulate the wave scattering problems we deal with. Let 𝐷 be a bounded

domain in 3 with a sufficiently smooth boundary. The scattering problem consists
of finding the solution to the problem:

2 𝑘2 𝑢 0 in 𝐺 : 3 𝐺, 𝐺 : 𝑀
𝑚 1𝐷𝑚, 𝑘 const > 0, (1)

where 𝐷𝑚 𝐵 𝑥𝑚, 𝑎 is an impedance ball, centered at 𝑥𝑚 and of small radius 𝑎,
𝑢 𝑢0 𝑣, 𝑢0 𝑒𝑖𝑘𝛼 𝑥 , 𝛼 𝑆 ,2 (2)

𝑆2 is the unit sphere in 3, 𝑢0 is the incident field, 𝑣 is the scattered field satisfying
the radiation condition

𝑣𝑟 𝑖𝑘𝑣 𝑜
1
𝑟

, 𝑟 : 𝑥 , 𝑣𝑟 :
𝜕𝑣

𝜕𝑟
, (3)

242 Wave Scattering Theory for Small Bodies of Arbitrary Shapes



WAVE SCATTERING BY MANY SMALL IMPEDANCE PARTICLES AND APPLICATIONS 195

and 𝑢 satisfies the impedance boundary condition (bc) on the boundary of 𝐺,
𝑢𝑁 𝜁𝑚𝑢 0, on 𝑆𝑚, Im𝜁𝑚 0, (4)

where 𝜁𝑚 is a constant, 𝑁 is the unit normal to 𝑆 : 𝑀
𝑚 1𝑆𝑚, pointing out of

𝐺 : 𝑀
𝑚 1𝐷𝑚, and 𝑆𝑚 is the surface of 𝐷𝑚 𝐵 𝑥𝑚, 𝑎 .

By refraction coefficient 𝑛 𝑥 the coefficient in the equation
2 𝑘2𝑛2 𝑥 𝑢 2 𝑘2 𝑞 𝑥 𝑢 0 (5)

is understood, where 𝑞 𝑥 : 𝑘2 𝑛2 𝑥 1 .
Let

𝑔 𝑥, 𝑦
𝑒𝑖𝑘 𝑥 𝑦

4𝜋 𝑥 𝑦
.

Then 2 𝑘2 𝑔 𝑥, 𝑦 𝛿 𝑥 𝑦 , where 𝛿 𝑥 is the delta function.
Let us distribute small impedance particles 𝐷𝑚 𝐵 𝑥𝑚, 𝑎 in 𝐷 so that

𝑎𝜅 2 1 𝑜 1 , 𝑎 0, (6)
where 𝐷 is an arbitrary connected open subset of 𝐷, is its volume, 𝜅 0, 1
is a number the experimenter may choose arbitrarily and is the number of
particles in . Throughout this paper the important assumptions 𝑎 𝑑 𝜆 and (6)
are satisfied. As 𝑎 0 the number of small particles in (6) tends to infinity
since 𝜅 2 < 0.
The boundary impedances 𝜁𝑚 are chosen by the formula

𝜁𝑚 𝑎 𝜅ℎ 𝑥𝑚 , (7)
where ℎ 𝑥 is a continuous function in 𝐷, Imℎ 0.
It will be clear from Section 3 that the function ℎ 𝑥 can be determined by

choosing a suitable boundary impedance 𝜁 𝑥 . When 𝑎 0, the 𝜁𝑚 and ℎ 𝑥𝑚 can
be considered as continuous functions 𝜁 𝑥 and ℎ 𝑥 .
The many-body scattering problem (1)–(4) has a solution and this solution is

unique, see [31]. In Section 2 a method for solving this problem is given. In Sec-
tion 3 a recipe for creating materials with a desired refraction coefficient is given.
In Section 4 a recipe for creating materials with a desired radiation pattern is given.

2. Solution of many-body scattering problem
We look for the solution of the form

𝑢 𝑢0

𝑀

𝑚 1 𝑆𝑚

𝑔 𝑥, 𝑠 𝜎𝑚 𝑠 𝑑𝑠

𝑀

𝑚 1
𝑔 𝑥, 𝑥𝑚 𝑄𝑚 𝐽, (8)

where 𝜎𝑚 𝑠 are unknown, 𝑄𝑚 : 𝑆𝑚
𝜎𝑚 𝑠 𝑑𝑠. One may think about 𝜎𝑚 as of

charge densities on 𝑆𝑚 and of 𝑄𝑚 as of total charge on the surface 𝑆𝑚. We prove
that

𝐽 :
𝑀

𝑚 1 𝑆𝑚

𝑔 𝑥, 𝑠 𝑔 𝑥, 𝑥𝑚 𝜎𝑚 𝑠 𝑑𝑠
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is negligible compared to

𝐼 :
𝑀

𝑚 1
𝑔 𝑥, 𝑥𝑚 𝑄𝑚, 𝐽 𝐼

as 𝑎 0.
Let us prove this claim. First, we need the following lemma.

Lemma 1. One has:

𝑄𝑚 4𝜋𝑎2𝜁𝑚𝑢𝑚 4𝜋𝑎2 𝜅ℎ𝑚𝑢𝑚, ℎ𝑚 : ℎ 𝑥𝑚 , 𝑢𝑚 : 𝑢 𝑥𝑚 . (9)

Proof: Let us define the effective field acting on the 𝑚-th body,

𝑢𝑒 : 𝑢𝑚𝑒 : 𝑢
𝑆𝑚

𝑔 𝑥, 𝑠 𝜎𝑚 𝑠 𝑑𝑠.

If 𝑎 is small, then 𝑢 𝑥 𝑢𝑒 𝑥 for any 𝑥 such that 𝑥 𝑥𝑚 𝑑. Let us use the
exact boudary condition (4) for 𝑢𝑒 and the known formula for the normal derivative
of the single layer potential to get

𝑢𝑒𝑁 𝐴𝜎𝑚 𝜎𝑚 2 𝜁𝑚𝑢𝑒𝑚 𝜁𝑚
𝑆𝑚

𝑔 𝑥, 𝑠 𝜎𝑚 𝑠 𝑑𝑠 0. (10)

Here 𝐴𝜎 :
𝑆𝑚

𝑔𝑁𝑡 𝑡, 𝑠 𝜎𝑚 𝑠 𝑑𝑠, 𝑡 𝑆𝑚. Let us integrate (10) over 𝑆𝑚 and keep
the main term as 𝑎 0. One knows that

𝑆𝑚
𝐴𝜎 𝜎 2𝑑𝑡 𝑄𝑚. Furthermore,

𝑆𝑚
𝑔 𝑡, 𝑠 𝑑𝑠 𝑎, as one can check by a simple calculation using the fact that 𝑆𝑚

is a sphere of radius 𝑎. This allows one to conclude that

𝜁𝑚
𝑆𝑚

𝑑𝑠𝜎𝑚 𝑠
𝑆𝑚

𝑔 𝑡, 𝑠 𝑑𝑡 ℎ𝑚𝑎
1 𝜅𝑄𝑚, 𝜁𝑚

𝑆𝑚

𝑢𝑒𝑑𝑠 4𝜋𝑎2 𝜅ℎ𝑚𝑢𝑒𝑚

and
𝑆𝑚

𝑢𝑒𝑁 𝑑𝑠 𝑂 𝑎2 as 𝑎 0. From the above estimates the conclusion of
Lemma 1 follows.

Let us now check our claim 𝐽 𝐼 as 𝑎 0. One has

𝑔 𝑥, 𝑥𝑚 𝑄𝑚 𝑂 𝑎2 𝜅𝑑 1

for 𝑥 𝑥𝑚 > 𝑑, 𝑎 0. On the other hand, one derives

𝑆𝑚

𝑔 𝑡, 𝑠 𝑔 𝑥, 𝑥𝑚 𝜎𝑚 𝑠 𝑑𝑠 𝑂 𝑎𝑑 2𝑎2 𝜅 𝑂
𝑎

𝑑
𝑂 𝑎2 𝜅𝑑 1 .

This estimate justifies our claim since 𝑎 𝑑. It follows that asymptotically, as
𝑎 0, one has

𝑢 𝑢0

𝑀

𝑚 1
𝑔 𝑥, 𝑥𝑚 𝑄𝑚 𝑢0 4𝜋𝑎2 𝜅

𝑀

𝑚 1
𝑔 𝑥, 𝑥𝑚 ℎ𝑚𝑢𝑚, (11)
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for 𝑥 𝑥𝑚 𝑎. Note that 𝑀 𝑂 𝑎𝜅 2 . Formula (11) allows one to calculate
𝑢 𝑥 at any point 𝑥, if the numbers 𝑢𝑚, 1 𝑚 𝑀 , are known. One can use the
following linear algebraic system (LAS) for finding 𝑢𝑚,

𝑢 𝑗 𝑢0 𝑗 4𝜋𝑎2 𝜅

𝑀

𝑚 𝑗

𝑔 𝑥 𝑗 , 𝑥𝑚 ℎ𝑚𝑢𝑚, 1 𝑗 𝑀. (12)

The order 𝑀 𝑂 𝑎𝜅 2 of this system is large if 𝑎 is small. One can reduce this
order: consider a covering of 𝐷 by nonintersecting small cubes 𝑝, 1 𝑝 𝑃,
such that 𝑑 diam 𝑝 𝜆, 𝑢𝑚 𝑢𝑝, ℎ𝑚 ℎ𝑝 for all 𝑥𝑚 𝑝. Then formula
(12) can be written as

𝑢𝑞 𝑢0𝑞 4𝜋𝑎2 𝜅

𝑃

𝑝 𝑞

𝑔 𝑥𝑞, 𝑥𝑝 ℎ𝑝𝑢𝑝

𝑥𝑚 𝑝

1 𝑢0𝑞 4𝜋
𝑃

𝑝 𝑞

𝑔 𝑥𝑞, 𝑥𝑝 ℎ𝑝𝑢𝑝 𝑝 , (13)

where
𝑎2 𝜅

𝑥𝑚 𝑝

1 𝑝

by formula (6). As 𝑎 0, diam 𝑝 0 and formula (13) yields in the limit the
integral equation for 𝑢,

𝑢 𝑥 𝑢0 𝑥 4𝜋
𝐷

𝑔 𝑥, 𝑦 ℎ 𝑦 𝑢 𝑦 𝑑𝑦. (14)

Lemma 2. Eq. (14) has a solution, this solution is unique and it is a limiting
value of the solution to the scattering problem (1)–(4).

Proof: Apply the operator 2 𝑘2 to equation (14) and get
2 𝑘2 𝑢 4𝜋ℎ 𝑥 𝑢 𝑥 . (15)

This is a Schrödinger equation with potential 𝑞 𝑥 : 4𝜋ℎ 𝑥 ; equations (2)–(3) hold.
We assumed Imℎ 0. Therefore (15) has at most one solution. It is a Fredholm-type
equation, so it has a solution. Lemma 2 is proved.
It follows from Lemma 2 that the LAS (13) for 𝑢𝑝 is solvable and its solution

is unique. Let us write Eq. (15) as
2𝑢 𝑘2𝑛2 𝑥 𝑢 0, 𝑛2 𝑥 : 1 4𝜋𝑘 2ℎ 𝑥 . (16)

Conclusion. Embedding small impedance balls 𝐵 𝑥𝑚, 𝑎 in 𝐷 results in creating
in 𝐷 a new material with the refraction coefficient

𝑛 𝑥 1 4𝜋𝑘 2ℎ 𝑥 1 2. (17)
If one wants to have a material with the refraction coefficient 𝑛 𝑥 , then one chooses
by (17) the function ℎ 𝑥 . If ℎ 𝑥 is chosen, then one knows the boundary impedance
𝜁 𝑥 which generates the desired ℎ 𝑥 . The practical problem is to prepare small
particles with the desired boundary impedance.
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3. Recipe for creating materials with a desired refraction coefficient
Let us formulate a recipe for creating materials with a desired refraction coefficient.

Formula (17) shows that if ℎ 𝑥 is chosen properly, then any 𝑛 𝑥 can be obtained
in 𝐷.

Recipe for creating materials with a desired refraction coefficient:
a) Calculate by formula (17) the function ℎ 𝑥 ;
b) Distribute small impedance balls in the domain 𝐷 by the distribution law (6).

The boundary impedances of these balls are defined by the function ℎ 𝑥 .

Theorem 1. The refraction coefficient of the resulting medium tends to the desired
coefficient 𝑛 𝑥 as 𝑎 0.

Let us show that a practically negative refraction coefficient 𝑛 𝑥 can be obtained
by the above recipe. Denote 𝑏 : 4𝜋𝑘 2 > 0 and write (17) as 𝑛 𝑥 1 𝑏ℎ 𝑥 1 2

1 𝑏ℎ 𝑥 1 2𝑒𝜙 2, where 𝜙 is the argument of 1 𝑏ℎ 𝑥 . Since the operator in (14)
is Fredholm, it remains Fredholm under small perturbations. Therefore one can take
ℎ 𝑖𝜖 , where 𝜖 > 0 is sufficiently small and equation (14) will still have a unique
solution.
By choosing ℎ so that Re 1 𝑏ℎ > 0 and Im 1 𝑏ℎ < 0 and small, one gets

the argument 𝜙 2𝜋 𝛿, where 𝛿 > 0 is arbitrarily small if 𝜖 is sufficiently small.
Then 𝑛 𝑥 will be nearly negative: its argument will be 𝜋 𝛿 2.

4. Creating materials with a desired radiation pattern
Let us define what we mean by radiation pattern. Consider the scattering problem

for Eq. (15),
2𝑢 𝑘2𝑢 𝑞 𝑥 𝑢 0, 𝑢 𝑒𝑖𝑘𝛼 𝑥 𝑣, (18)

where 𝑣 satisfies the radiation condition. Assume that 𝑘 > 0 and 𝛼 𝑆2 are fixed.
Then the scattering amplitude 𝐴 𝛽, 𝛼, 𝑘 𝐴 𝛽 , where the dependence on 𝑘, 𝛼 is
dropped since 𝑘 and 𝛼 are fixed. The formula for the scattering amplitude is known,
see, e.g. [34],

𝐴 𝛽 : 𝐴𝑞 𝛽
1
4𝜋

𝑒 𝑖𝑘𝛽 𝑦𝑞 𝑦 𝑢 𝑦 𝑑𝑦. (19)

We call 𝐴 𝛽 the radiation pattern.
Consider an inverse problem (IP):
Given an arbitrary 𝑓 𝛽 𝐿2 𝑆2 and an arbitrary small 𝜖 > 0, can one find

a 𝑞 𝐿2 𝐷 such that
𝑓 𝛽 𝐴𝑞 𝛽 𝐿2 𝑆2 < 𝜖. (20)

Theorem 2. For any 𝑓 𝛽 𝐿2 𝑆2 and an arbitrary small 𝜖 > 0 there is
a 𝑞 𝐿2 𝐷 such that (20) holds.

Since small perturbations of 𝑞 result in small perturbations of 𝐴 𝛽 , there are
infinitely many potentials 𝑞 for which inequality (20) holds.
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The conclusion of Theorem 2 follows from Lemmas 3 and 4.
Lemma 3. The set

𝐷
𝑒 𝑖𝑘𝛽 𝑥ℎ 𝑥 𝑑𝑥 ℎ 𝐿2 𝐷 is dense in 𝐿2 𝑆2 .

Corollary 1. Given 𝑓 𝐿2 𝑆2 and 𝜖 > 0, one can find ℎ 𝐿2 𝐷 such that

𝑓 𝛽
1
4𝜋 𝐷

𝑒 𝑖𝑘𝛽 𝑥ℎ 𝑥 𝑑𝑥 < 𝜖.

Lemma 4. The set 𝑞 𝑥 𝑢 𝑥, 𝛼 𝑞 𝐿2 𝐷 is dense in 𝐿2 𝐷 .

Corollary 2. Given ℎ 𝐿2 𝐷 and 𝜖 > 0, one can find 𝑞 𝐿2 𝐷 such that

ℎ 𝑥 𝑞 𝑥 𝑢 𝑥, 𝛼 𝐿2 𝐷 < 𝜖.

Since the scattering amplitude

𝐴 𝛽
1
4𝜋 𝐷

𝑒 𝑖𝑘𝛽 𝑥ℎ 𝑥 𝑑𝑥

depends continuously on ℎ, the inverse problem IP is solved by Lemmas 3 and 4.
Proof of Lemma 3: Assume the contrary. Then 𝜓 𝐿2 𝑆2 such that

0
𝑆2

𝑑𝛽𝜓 𝛽
𝐷

𝑒 𝑖𝑘𝛽 𝑥ℎ 𝑥 𝑑𝑥 ℎ 𝐿2 𝐷 .

Thus,

𝑆2
𝑑𝛽𝜓 𝛽 𝑒 𝑖𝑘𝛽 𝑥 0 𝑥 3.

Therefore,

0
𝑑𝜆𝜆2

𝑆2
𝑑𝛽𝑒 𝑖𝜆𝛽 𝑥𝜓 𝛽

𝛿 𝜆 𝑘

𝑘2
0 𝑥 3.

By the injectivity of the Fourier transform, one gets

𝜓 𝛽
𝛿 𝜆 𝑘

𝑘2
0.

Therefore, 𝜓 𝛽 0. Lemma 3 is proved.
Proof of Lemma 4: Given ℎ 𝐿2 𝐷 , define

𝑢 : 𝑢0
𝐷

𝑔 𝑥, 𝑦 ℎ 𝑦 𝑑𝑦, 𝑔 :
𝑒𝑖𝑘 𝑥 𝑦

4𝜋 𝑥 𝑦
, (21)

𝑞 𝑥 :
ℎ 𝑥

𝑢 𝑥
. (22)

If 𝑞 𝐿2 𝐷 , then this 𝑞 solves the problem, and 𝑢, defined in (21), is the scattering
solution,

𝑢 𝑢0
𝐷

𝑔 𝑥, 𝑦 𝑞 𝑦 𝑢 𝑦 𝑑𝑦, (23)
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and
𝐴 𝛽

1
4𝜋 𝐷

𝑒 𝑖𝑘𝛽 𝑦ℎ 𝑦 𝑑𝑦.

If 𝑞 is not in 𝐿2 𝐷 , then the null set 𝑁 : 𝑥 : 𝑥 𝐷, 𝑢 𝑥 0 is non-void.
Let

𝑁𝛿 : 𝑥 : 𝑢 𝑥 < 𝛿, 𝑥 𝐷 , 𝐷 𝛿 : 𝐷 𝑁𝛿 .

Claim 1. ℎ𝛿

ℎ, in 𝐷 𝛿 ,

0, in 𝑁𝛿 ,
such that ℎ𝛿 ℎ 𝐿2 𝐷 < 𝑐𝜖,

𝑞 𝛿 :
ℎ𝛿
𝑢𝛿

, in 𝐷 𝛿 ,

0, in 𝑁𝛿 ,
𝑞 𝛿 𝐿 𝐷 , 𝑢𝛿 : 𝑢0 𝐷

𝑔ℎ𝛿𝑑𝑦.

Proof of Claim 1: The set 𝑁 is, generically, a line 𝑙 𝑥 : 𝑢1 𝑥 0, 𝑢2 𝑥 0 ,

where 𝑢1 𝑢 and 𝑢2 𝑢. Consider a tubular neighborhood of this line, 𝜌 𝑥, 𝑙 𝛿.
Let the origin 𝑂 be chosen on 𝑙, 𝑠3 be the Cartesian coordinate along the tangent
to 𝑙, and 𝑠1 𝑢1, 𝑠2 𝑢2 are coordinates in the plane orthogonal to 𝑙, 𝑠 𝑗-axis is
directed along 𝑢 𝑗 𝑙, 𝑗 1, 2.
The Jacobian of the transformation 𝑥1, 𝑥2, 𝑥3 𝑠1, 𝑠2, 𝑠3 is nonsingular,

1 𝑐, because 𝑢1 and 𝑢2 are linearly independent. Define

ℎ𝛿 :
ℎ, in 𝐷 𝛿 ,

0, in 𝑁𝛿 ,
𝑢𝛿 : 𝑢0

𝐷

𝑔 𝑥, 𝑦 ℎ𝛿 𝑦 𝑑𝑦, 𝑞 𝛿 :
ℎ𝛿
𝑢𝛿

, in 𝐷 𝛿 ,

0, in 𝑁𝛿 .

One has 𝑢𝛿 𝑢0 𝐷
𝑔ℎ𝑑𝑦

𝐷
𝑔 𝑥, 𝑦 ℎ ℎ𝛿 𝑑𝑦,

𝑢𝛿 𝑥 𝑢 𝑥 𝑐
𝑁𝛿

𝑑𝑦

4𝜋 𝑥 𝑦
𝛿 𝐼 𝛿 , 𝑥 𝐷 𝛿 , 𝑐 max

𝑥 𝑁𝛿

ℎ 𝑥 .

If one proves that 𝐼 𝛿 𝑜 𝛿 , 𝛿 0, 𝑥 𝐷 𝛿 then 𝑞 𝛿 𝐿 𝐷 , and Claim 1 is
proved.

Claim 2.
𝐼 𝛿 𝛿2 ln 𝛿 , 𝛿 0.

Proof of Claim 2:

𝑁𝛿

𝑑𝑦

𝑥 𝑦 𝑁𝛿

𝑑𝑦

𝑦
𝑐1

𝑐2 𝛿

0
𝜌

1

0

𝑑𝑠3

𝜌2 𝑠23

𝑑𝜌

𝑐1

𝑐2 𝛿

0
𝑑𝜌𝜌 ln 𝑠3 𝜌2 𝑠23

1
0 𝑐3

𝑐2 𝛿

0
𝜌 ln

1
𝜌

𝑑𝜌

𝛿2 ln 𝛿 .
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The condition 𝑢 𝑗 𝑙 𝑐 > 0, 𝑗 1, 2, implies that a tubular neighborhood of
the line 𝑙, 𝑁𝛿 𝑥 : 𝑢1 2 𝑢2 2 𝛿 , is included in a region 𝑥 : 𝑥 𝑐2𝛿 and
includes a region 𝑥 : 𝑥 𝑐2𝛿 . This follows from the estimates

𝑐2𝜌 𝑢 𝑥 𝑢 𝜉 𝑥 𝜉 𝑐2𝜌.

Here 𝜉 𝑙, 𝑥 is a point on a plane passing through 𝜉 and orthogonal to 𝑙,
𝜌 𝑥 𝜉 , and 𝛿 > 0 is sufficiently small, so that the terms of order 𝜌2 are
negligible, 𝑐2 max𝜉 𝑙 𝑢 𝜉 , 𝑐2 min𝜉 𝑙 𝑢 𝜉 .

Claim 2, and, therefore, Lemma 4 are proved.
Therefore, Theorem 2 is proved.
Let us describe a numerical method for calculation of ℎ given 𝑓 𝛽 and 𝜖 > 0.

Let 𝜙 𝑗 be a basis in 𝐿2 𝐷 , ℎ𝑛 𝑛
𝑗 1 𝑐

𝑛

𝑗
𝜙 𝑗 , 𝜓 𝑗 𝛽 : 1

4𝜋 𝐷
𝑒 𝑖𝑘𝛽 𝑥𝜙 𝑗 𝑥 𝑑𝑥.

Consider the problem

𝑓 𝛽

𝑛

𝑗 1
𝑐

𝑛

𝑗
𝜓 𝑗 𝛽 min . (24)

A necessary condition for (24) is a linear algebraic system for 𝑐 𝑛

𝑗
.
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1. Introduction 
The aim of this paper is to give an affirmative answer to the question 

in the title of this paper. This brings potentially many possibilities for 
progress in technology. 

There is a large literature on wave scattering by small bodies, start-
ing from Rayleigh’s work (1871)[1–3]. If the scatterer is small then the 
scattered field can be calculated analytically for bodies of arbitrary 
shapes, see reference [4]. 

The many-body wave scattering problem was discussed in the liter-
ature mostly numerically, if the number of scatterers was small, or under 
the assumption that the influence of the waves, scattered by other parti-
cles on a particular particle is negligible[5]. This corresponds to the case 
when the distance d between neighbouring particles is much larger than 
the wavelength λ, and the characteristic size a of a small body (particle) 
is much smaller than λ. Theoretically and practically the assumptions 

a << λ,  d >> λ, 
(1) 

are the simplest ones which allow one to neglect multiple scattering. By 
k = 2𝜋𝜋

𝜆𝜆
, the wave number is denoted. 

In the author’s theory, the basic assumptions are 
a << d << λ, 

(2) 
and the multiple scattering is of basic importance under these assump-
tions[4,6–35]. It is clear that assumption (2) can be practically realized. Its  
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importance comes from the fact that the author gave 

a rigorous asymptotically exact solution of the many-

body scattering problem under assumption (2) when 

a → 0. This solution can be well approximated nu-

merically by the particles of the size a > 30 nm. Prac-

tically the size of a can be found by comparison of 

the solution for some a and for 𝑎𝑎
2
. If these solutions 

are practically close, then one considers this a as suit-

able. The aim of this paper is to show that our theory 

can be used practically. 
In reference [36], for the first time the author’s 

theory was used for solving the scattering problem 
for 10 billion small particles. This problem was 
solved numerically and numerical results were pre-
sented. 

Let us formulate the wave scattering problems 
we deal with. Let D be a bounded domain in ℝ3 
with a sufficiently smooth boundary. The scattering 
problem consists of finding the solution to the prob-
lem: 

(∇2 + 𝑘𝑘2)𝑢𝑢 = 0 in G’ := ℝ3\𝐺𝐺, G := 𝑈𝑈𝑚𝑚=1
𝑀𝑀 𝐷𝐷𝑚𝑚,  

k = const > 0, 
(3) 

where Dm = B(xm, a) is an impedance ball, centered 
at xm and of small radius a, 

u = u0 + v, u0 = eikα·x, α ∈ S2, 
(4) 

S2 is the unit sphere in ℝ3, u0 is the incident field, v 
is the scattered field satisfying the radiation condi-
tion 

vr – ikv = o(1
𝑟𝑟
), r := |𝑥𝑥| → ∞, vr := 𝜕𝜕𝜕𝜕

∂r
, 

(5) 
and u satisfies the impedance boundary condition (bc) 
on the boundary of G: 

uN – ζmu = 0,  on Sm,  Imζm ≤ 0, 
(6) 

where ζm is a constant, N is the unit normal to S := 
𝑈𝑈𝑚𝑚=1
𝑀𝑀 𝑆𝑆𝑚𝑚, pointing out of G := 𝑈𝑈𝑚𝑚=1

𝑀𝑀 𝐷𝐷𝑚𝑚, and Sm is 
the surface of Dm = B(xm, a). 

By refraction coefficient n(x) the coefficient in 
the equation 
 

(∇2 + 𝑘𝑘2𝑛𝑛2(𝑥𝑥))𝑢𝑢 = (∇2 + 𝑘𝑘2 − 𝑞𝑞(𝑥𝑥))𝑢𝑢 = 0 
(7) 

is understood, where q(x) := k2(n2(x) – 1). 

Let g(x, y) = 𝑒𝑒𝑖𝑖𝑖𝑖|𝑥𝑥−𝑦𝑦|

4π|𝑥𝑥−𝑦𝑦|
. Then (∇2 + k2)g(x, y) = –

δ(x – y), where δ(x) is the delta function. 
Let us distribute small impedance particles Dm 

= B(xm, a) in D so that 
ℕ(∆) = aκ–2|∆|[1 + o(1)], a → 0, 

(8) 
where ∆ ⸦ D is an arbitrary connected open subset 
of D, |∆| is its volume, κ ∈ (0, 1) is a number the 
experimenter may choose arbitrarily and ℕ(∆) is the 
number of particles in ∆. Throughout this paper the 
important assumptions a << d << λ and (8) are 
satisfied. As a → 0, the number of small particles 
ℕ(∆) in (8) tends to infinity since κ – 2 < 0. 

We assume in this paper (for simplicity only) 
that the small particles are distributed in the domain 
D and the refraction coefficient in D equals to 1. In 
the monograph [31], it is assumed that D is filled 
with the material whose refraction coefficient n0(x) is 
known and we wanted to create in D the material 
with the desired refraction coefficient n(x). 

The boundary impedances ζm are chosen by the 
formula 

ζm = a–κh(xm), 
(9) 

where h(x) is a continuous function in D, Imh ≤ 0. 
It will be clear from Section 3 that the function 

h(x) can be determined by choosing a suitable bound-
ary impedance ζ(x). When a → 0, the ζm and h(xm) 
can be considered as continuous functions ζ(x) and 
h(x). 

2. Solution of many-body scattering 
problem 

We look for the solution of the form 

 

 
(10) 

where σm(s) are unknown, Qm := ∫ 𝜎𝜎𝑚𝑚(𝑠𝑠)𝑑𝑑𝑑𝑑𝑆𝑆𝑚𝑚 . One 
may think about σm as of charge densities on Sm and 
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of Qm as of total charge on the surface Sm. We prove 
that 

𝐽𝐽 ≔ � � [𝑔𝑔(𝑥𝑥, 𝑠𝑠) − 𝑔𝑔(𝑥𝑥, 𝑥𝑥𝑚𝑚)]𝜎𝜎𝑚𝑚(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑆𝑆𝑚𝑚

𝑀𝑀

𝑚𝑚=1

 

(11) 
is negligible compared to 

 
(12) 

so 
J << I as a → 0. 

(13) 
We prove that the field u satisfies the following inte-
gral equation as a → 0: 

u(x) = u0(x) – 4π∫ 𝑔𝑔(𝑥𝑥,𝑦𝑦)ℎ(𝑦𝑦)𝑢𝑢(𝑦𝑦)𝑑𝑑𝑑𝑑𝐷𝐷 , 
(14) 

where h(xm) = 𝜁𝜁𝑚𝑚
𝑎𝑎𝜅𝜅

, and, since there are sufficiently 
many points xm ∈ D, the function h(x) is uniquely de-
termined in D if the boundary impedances are known. 

Apply the operator to ∇2 + k2 to both sides of 
equation (14) and get 
�∇2 + 𝑘𝑘2 − 4𝜋𝜋ℎ(𝑥𝑥)�𝑢𝑢(𝑥𝑥) ∶= �∇2 + 𝑘𝑘2𝑛𝑛2(𝑥𝑥)�𝑢𝑢(𝑥𝑥)

= 0 
(15) 

Therefore, 
n2(x) = 1 – 4πk–2h(x). 

(16) 
We omit details since they can be found in the au-
thor’s publications listed in the References, in partic-
ular, in monograph [31]. 

If originally in D were material with the known 
refraction coefficient n0(x), then formula (16) were 
n2(x) = 𝑛𝑛02(𝑥𝑥)  – 4πh(x)N(x)k–2, where N(x) is the 
distribution density for the small particles, see refer-
ence [31]. In this paper, we assume (for simplicity 
only) that N(x) = 1, see formula (8). 

3. Recipe for creating materials 
with a desired refraction coefficient 

Let us formulate a recipe for creating materials 
with a desired refraction coefficient. Formula (16) 
shows that if h(x) is chosen properly, then any n(x) 
can be obtained in D. 

Recipe for creating materials with a desired re-
fraction coefficient: 

a) Calculate by formula (16) the function h(x); 
b) Distribute small impedance balls in the do-

main D by the distribution law (8). The boundary im-
pedances of these balls are defined by the function 
h(x). 

Theorem 1. The refraction coefficient of the re-
sulting medium tends to the desired coefficient n(x) 
as a → 0. 

Let us show that practically negative refraction 
coefficient n(x) can be obtained by the above recipe. 
Denote b := 4πk–2 > 0 and write equation (16) as 

n(x) = (1 – bh(x))1/2 = |1 − 𝑏𝑏ℎ(𝑥𝑥)|1/2𝑒𝑒𝜙𝜙/2, 
(17) 

where ϕ is the argument of 1 – bh(x). Since the oper-
ator in (14) is of Fredholm type, it remains Fredholm 
type under small perturbations. Therefore one can 
take h – i𝜖𝜖, where 𝜖𝜖 > 0 is sufficiently small, and 
equation (14) will still have a unique solution. 

By choosing h so that Re(1 – bh) > 0 and Im(1 
– bh) < 0 and small, one gets the argument ϕ = 2π – 
δ, where δ > 0 is arbitrarily small if 𝜖𝜖 is sufficiently 
small. Then n(x) will be nearly negative: its argument 
will be π – δ/2. 

4. Creating materials with a desired 
radiation pattern 

Let us define what we mean by the radiation 
pattern. Consider the scattering problem for the 
equation: 

∇2𝑢𝑢 + 𝑘𝑘2𝑢𝑢 − 𝑞𝑞(𝑥𝑥)𝑢𝑢 = 0, 𝑢𝑢 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖·𝑥𝑥 + 𝑣𝑣, 
(18) 

where v satisfies the radiation condition. Assume that 
k > 0 and α ∈ S2 are fixed. Then the scattering am-
plitude A(β, α, k) = A(β), where the dependence on k, 
α is dropped since k and α are fixed. The formula for 
the scattering amplitude is known, see, e.g., refer-
ence [35]: 

A(β): = Aq(β) = − 1
4𝜋𝜋 ∫ 𝑒𝑒

−𝑖𝑖𝑖𝑖𝑖𝑖·𝑦𝑦𝑞𝑞(𝑦𝑦)𝑢𝑢(𝑦𝑦)𝑑𝑑𝑑𝑑. 
(19) 

We call A(β) the radiation pattern. 
Consider an inverse problem (IP): 
Given an arbitrary f(β) ∈ L2(S2) and an arbi-

trary small 𝜖𝜖 > 0, can one find a q ∈ L2(D) such 
that 

�𝑓𝑓(𝛽𝛽) − 𝐴𝐴𝑞𝑞(𝛽𝛽)�
𝐿𝐿2(𝑆𝑆2)

 < 𝜖𝜖. 
(20) 
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This inverse problem was not formulated and 
was not studied in the works of other authors, to our 
knowledge. 

Our result is stated in Theorem 2. 
Theorem 2. For any f(β) ∈ L2(S2) and an ar-

bitrary small 𝜖𝜖 > 0 there is a q ∈ L2(D) such that 
(20) holds. 

Since small perturbations of q result in small 
perturbations of A(β), there are infinitely many po-
tentials q for which inequality (20) holds. 

The conclusion of Theorem 2 follows from lem-
mas 3 and 4. 

Lemma 3. The set  
�∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖·𝑥𝑥ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑𝐷𝐷 �

∀ℎ∈𝐿𝐿2(𝐷𝐷)
is dense in L2(S2). 

Corollary 1. Given f ∈ L2(S2) and 𝜖𝜖 > 0, one 
can find h ∈ L2(D) such that 

�𝑓𝑓(𝛽𝛽) + 1
4𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖·𝑥𝑥ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑𝐷𝐷 � < 𝜖𝜖. 

Lemma 4. The set {𝑞𝑞(𝑥𝑥)𝑢𝑢(𝑥𝑥,𝛼𝛼)}∀𝑞𝑞∈𝐿𝐿2(𝐷𝐷)  is 
dense in L2(D). 

Corollary 2. Given h ∈ L2(D) and 𝜖𝜖 > 0, one 
can find q ∈ L2(D) such that 

‖ℎ(𝑥𝑥) − 𝑞𝑞(𝑥𝑥)𝑢𝑢(𝑥𝑥,𝛼𝛼)‖𝐿𝐿2(𝐷𝐷) < 𝜖𝜖. 

Since the scattering amplitude 

A(β) = − 1
4𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖·𝑥𝑥ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑𝐷𝐷  

depends continuously on h, the inverse problem IP 
is solved by Lemmas 3 and 4. 

Proofs are omitted. They can be found in refer-
ence [31]. 

5. Discussion 
How is the theory, outlined in the previous sec-

tions, can be used practically?  
To create a material with a desired refraction 

coefficient, or a material with a refraction coefficient 
close to the desired, is practically very important. To 
my knowledge, there were no general methods for 
creating material with a desired refraction coefficient. 
To use the theory, outlined in this paper and in the 
monographs[31–33], one has to solve a technological 
problem: how to prepare a small particle, say, a ball 
of radius a, with the prescribed boundary impedance 
ζ. This problem should be solvable, see reference [33] 
for arguments supporting this conclusions. If this 
technological problem is solved, then the recipe 

outlined in this paper (and in the author’s mono-
graphs[31–33] can be immediately used in practice. 

The problem of creating materials with a de-
sired radiation pattern, the wave focusing materials, 
for example, was not investigated earlier. This prob-
lem is of great practical interest. The usual bodies 
scatter waves mostly backwards, somewhat sidewise 
and a little forwards. If one creates a body which 
scatters waves, for example, in a given solid angle, 
this would be of great practical interest. Such a body 
can be created as follows from the theory outlined in 
the previous Section. 

The author wrote this paper in an attempt to 
draw attention of the specialists in material sciences 
to the theory he has developed for creating materials 
with the desired refraction coefficient. 

The author is not aware of the experimental re-
sults based on his theory. Such results are very desir-
able. There are numerical results, based on his theory, 
see references [37] and [38]. 
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MATERIALS WITH A DESIRED REFRACTION COEFFICIENT

ALEXANDER G. RAMM

ABSTRACT. Producing materials with a desired refraction coefficient is of great theoreti-
cal and practical interest. There was no general method for creating such materials, except
the method, developed by the author. It was not even known that such a method do ex-
ist. The theoretical basis of this method is the asymptotic solution of the many-body wave
scattering problem for many small bodies with prescribed boundary impedances. Multiple
scattering is essential in our theory. The small bodies are embedded in a bounded region
D, filled with a material with a known refraction coefficient n0(x). Our basic physical
assumption is a ≪ d ≪ λ, where a is the characteristic size of the small particle, d
is the minimal distance between neighboring particles, and λ is the wave length in D.
The asymptotic of the solution to the above many-body scattering problem is derived for
a → 0.

1. INTRODUCTION

Let D be a bounded domain in R3 filled with a material with a known refraction coeffi-
cient n0(x). Let us embed into D many small particles Dm of a characteristic size a with
boundary impedances ζm let d be the minimal distance between neighboring particles, and
λ be the wavelength in D. We assume that

a ≪ d ≪ λ. (1.1)

We assume that the boundary impedance of a small body Dm is given by the equation:

ζm =
h(xm)

aκ
, h(x) ∈ C(D), (1.2)

where xm is a point inside Dm and κ ∈ [0, 1) is a constant that can be chosen by a
researcher. Since Dm is small, its position can be characterized by a point xm.

Let us formulate a recipe for producing a material with a desired refraction coefficient
n(x). The refraction coefficient n(x) is defined by the wave equation

∆u+ k2n2(x)u = 0, (1.3)
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where u(x) is the wave field, k > 0 is the wave number. For simplicity, we assume in this
paper that u is a scalar function. We also assume that D is filled in with a material whose
refraction coefficient n0(x) is known.

Problem: We want to produce in D the material with a desired refraction coefficient n(x).

Let us formulate a recipe for solving this problem.

Step 1. Calculate
p(x) = k2[n2

0(x)− n2(x)]. (1.4)
This step is trivial.

Step 2. Given p(x), find functions h(x), Imh(x) ≤ 0, and N(x) ≥ 0 from the equation:

4πh(x)N(x) = p(x), N(x) ≥ 0, Imp(x) ≤ 0. (1.5)

This step is also trivial. It has many solutions. For example, one can fix N(x) > 0 and
define h(x) by the formula:

h(x) =
p(x)

4πN(x)
, (1.6)

provided that Im p(x) ≤ 0.

Step 3. Distribute N = O( 1
a2−κ ) small particles Dm with boundary impedances ζm =

h(xm)
aκ in the domain D according to the law:

N (∆) =
1

a2−κ

∫

∆

N(x)dx[1 + o(1)], a → 0, (1.7)

where ∆ is any open subset of D, N (∆) is the number of small bodies in the subset ∆,
N(x) is the function from Step 2, the boundary impedance of the body Dm is chosen by
formula (1.2), the function h(x) in this formula is defined in Step 2, and xm is an arbitrary
fixed point inside Dm.

Our main result is the following theorem.

Theorem 1. The refraction coefficient of the material, obtained in the domain D after Step
3, tends to the desired refraction coefficient n(x) as a → 0.

A proof of this result is not short. It is presented in the monographs [1],[2], [3], in the re-
view paper [5], and in the author’s papers cited in these references. Many other problems,
based on similar ideas and methods, are presented in the above monographs: scattering
of electromagnetic waves by many small bodies, scattering of heat waves by many small
bodies, scattering of quantum-mechanical waves by many potentials with small supports,
some inverse scattering problems, and other results.

Remark 1. One may use the spherical particles M(xm, a) centered at the points xm and
of radius a for the creating of the materials with a desired refraction coefficient.

Remark 2. The total volume Va of the embedded particles tends to zero when a → 0.
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A proof is easy:

Va =
4

3
πa3 ×O(

1

a2−κ
) = O(a1+κ) → 0, a → 0.

2. ADDITIONAL CONSIDERATIONS

It is known how to embed many small particles Dm at the prescribed points xm. The
size of these particles can be as small as 20 nanometers. One of the known methods is
stereolitography.

The author is not familiar with the method of producing small particles with a prescribed
boundary impedance. To use my recipe for creating materials with a desired refraction
coefficient practically, it is necessary to develop a method for creating such small particles.
Let us give some arguments showing that such particles can be prepared.

The first argument goes as follows. The wave scattering problem for one small body with
a prescribed boundary impedance is:

∆u+ k2n2
0(x)u = 0, (2.1)

uν = ζmu on Sm, (2.2)
u = u0 + v, (2.3)

v|x| − ikv = o(
1

|x| ), |x| → ∞. (2.4)

Problem (2.1)–(2.4) has a solution and this solution is unique, see [4], pp. 30–50. There-
fore, the small body with the prescribed boundary impedance should exist. The condition
Imn(x) ≤ 0 is used for the proof of the uniqueness of the solution to the scattering prob-
lem (2.1)–(2.4).

The second argument for the existence of small bodies with a prescribed boundary impedance
goes as follows.

Problem (2.1)–(2.4) with ζ = 0 does exist. The same is true for ζ = ∞. The small particles
with any intermediate value of ζ should also exist.

3. MATERIALS WITH A DESIRED RADIATION PATTERN

Suppose that
∆u+ k2n2(x)u := ∆u+ k2u− q(x)u = 0, (3.1)

where
q(x) = k2[1− n2(x)]. (3.2)

Recall that n(x) = 1 out of the bounded domain D.
The solution u to the scattering problem (3.1) exists and is unique, subject to the

condition
u = u0 + v, (3.3)

where v satisfies the radiation condition and u0 is the incident plane wave.
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We assume in this section that k > 0 and α ∈ S2, the direction of the incident wave, are
fixed. We denote the scattering amplitude A(β),

A(β) := Aq(β) = − 1

4π

∫

R3

e−ikβ·yq(y)u(y)dy, (3.4)

where u(y) := u(y, α, k), and the dependence on α and k is omitted since α and k are
fixed.

Choose an arbitrary f(β) ∈ L2(S2), where S2 is the unit sphere in R3, and an arbitrary
small fixed number ϵ > 0, and state the following new inverse problem:

Inverse problem. Given f(β) and ϵ, find q ∈ L2(D) such that

∥f(β)−Aq(β)∥L2(S2) < ϵ. (3.5)

It was not known if this problem has a solution. This problem was studied and solved in
[3]. We formulate the result and refer the reader to [3] for a detailed proof.

Theorem 2. For any f(β) ∈ L2(S2) and an arbitrary small number ϵ > 0, there exists a
q ∈ L2(D) such that inequality (3.5) holds.

Remark 3. There are infinitely many potentials satisfying (3.5). Indeed, the scattering
amplitude depends continuously on the potential in the following sense:

∥Aq1 −Aq2∥L2(S2) ≤ c∥q1 − q2∥L2(D), (3.6)

where c > 0 is a constant depending only on the bound for the norms of the potentials and
on D. Therefore, small changes of the potential in L2(D) norm lead to small changes in
the scattering amplitude in L2(S2) norm in the sense (3.6). Thus, if inequality (3.5) holds
for some q ∈ L(D), it will hold for any potential sufficiently close to q in L2(D) norm.

Remark 4. Theorem 2 can be of practical interest. For example, let f(β) = 1 in a narrow
cone and f(β) = 0 outside this cone. Then, the body D with such a radiation pattern will
have practical interest. The wave, scattered by this body, will be scattered mostly in the
above cone. The scattered wave can be directed not as usual to the back of the body and to
the front of the body, but mostly to the above cone.

4. CONCLUSION

A recipe is given for creating materials with a desired refraction coefficient by embed-
ding many small particles with prescribed boundary impedances into a given material. The
refraction coefficient can be so chosen that the resulting material will have a desired ra-
diation pattern for a fixed wave number and a fixed direction of the incident plane wave.
Materials with a prescribed radiation pattern can be created. For future developments, it is
desirable to do many experiments based on the author’s theory. One can change the given
refraction coefficient n0(x) in a desired direction. Theoretically, the major advance is the
author’s (asymptotical as a → 0) solution to the many-body scattering problem under the
assumption a ≪ d ≪ λ.
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How to Create Materials
with a Desired Refraction

Coefficient? Wave Scattering
by Many Small Particles

Alexander G. Ramm

Mathematics Department,
Kansas State University,

ramm@ksu.edu
www.math.ksu.edu/∼ramm

Abstract

The novel points in this work include:

(1) Asymptotic and numerical methods for solving wave scat-
tering problem by many small bodies embedded in a non-
homogeneous medium. Basic assumption: a� d� λ.

(2) Derivation of the equation for the field in the limit a → 0,
where a is the characteristic size of the bodies (particles),
and their number M = M(a) tends to infinity at a suitable
rate. Multiple scattering is taken into account.

(3) A recipe for creating materials with a desired refraction coef-
ficient by embedding many small particles in a given material.

(4) Some of the many possible applications:

(a) creating materials with negative refraction,
(b) creating wave-focusing materials.

Results I have Published but Do Not Have Time to Discuss

in This Talk:

(a) electromagnetic wave scattering,
(b) creating materials with a desired magnetic permeability,
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(c) wave scattering by small particles of arbitrary shapes, wave scattering
by many nanowires,

(d) heat transfer in a medium in which many small bodies are embedded,
(e) quantum-mechanical scattering by many potentials with small

supports,
(f) wave scattering by small bodies with transmission boundary conditions,

and other problems.

In the author’s monograph (*) these problems are discussed in detail and
solved; in (**) the bounded domain is located inside perfectly conducting
surface. The new monograph (****) is published in 2023.

My Monographs in Which the Theory is Developed:

(*) A.G. Ramm, Scattering of Acoustic and Electromagnetic Waves
by Small Bodies of Arbitrary Shapes. Applications to Creating
New Engineered Materials, Momentum Press, New York, 2013.

(**) A.G. Ramm, Creating materials with a desired refraction
coefficient, IOP Publishing, Bristol, UK, 2020, Second edition.

(***) A.G. Ramm, Wave scattering by small bodies of arbitrary
shapes, World Sci. Publishers, Singapore, 2005.

In (**) the problem of creating material with a desired refraction coefficient
is discussed in the case when the material is located inside a bounded closed
connected surface on which the Dirichlet boundary condition is imposed.

My New Monograph:

(****) A. G. Ramm, Wave scattering by small bodies. Creating ma-
terials with a desired refraction coefficient and other applications,
World Sci. Publishers, Singapore, 2023.

Recipe for Creating Materials with a Desired Refraction

Coefficient:

To my knowledge, there are no other general methods for creating materials
with a desired refraction coefficient.

If ∇2u+k2n2(x)u = 0, k = const > 0, then n(x) is called the refraction
coefficient.
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Step 1. Given the original coefficient n2
0(x) and the desired coefficient

n2(x), calculate function p(x) by formula

p(x) = k2[n2
0(x)− n2(x)].

This step is trivial.

Step 2. Given p(x), solve the quation p(x) = 4πh(x)N(x) for h(x) and
N(x), which satisfy conditions:

Im h(x) ≤ 0, N(x) ≥ 0.

This step is also trivial and has many solutions.
For example, one can fix an arbitrary N(x) > 0, and then find h(x) =

h1(x) + ih2(x), where h1 = Re h, h2 = Im h, by the formulas

h1(x) =
p1(x)

4πN(x)
, h2(x) =

p2(x)

4πN(x)
,

where p1 = Re p, p2 = Im p. The condition Imh ≤ 0 holds if Im p ≤ 0, i.e.,
Im [n2

0(x) − n2(x)] ≤ 0.

Step 3. Prepare M = 1
a2−κ

∫
D
N(x)dx[1 + o(1)] small balls Bm(xm, a)

with the boundary impedances ζm = h(xm)
aκ , 0 ≤ κ ≤ 1, where the points

xm, 1 ≤ m ≤ M , are distributed in D according to the formula N (Δ) =
1

a2−κ

∫
Δ
N(x)dx[1 + o(1)], Δ ⊂ D is an arbitrary open subset, N (Δ) is the

number of particles in Δ, N(x) ≥ 0 is a continuous function of our choice.
Embed (in D) M balls Bm(xm, a) with boundary impedance ζm, d =

O(a(2−κ)/3), d = minj �=m |xm − xj |.
The material, obtained after the embedding of these M small balls, will

have the desired refraction coefficient n2(x) with an error that tends to zero
as a→ 0.

Step 3 is the only non-trivial step in this recipe from the practical point of
view.

Technological problems

The first technological problem is:

How can one embed many, namely M = M(a), small balls in a given
material so that the centers of the balls (points xm) are distributed as
desired?

Physicists know how to solve this problem.
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The second technological problem is:

How does one prepare a ball Bm of small radius a with a desired boundary

impedance ζm = h(xm)
aκ , 0 ≤ κ < 1, where h(x), Imh ≤ 0, is a given

function?

I argue that small particles with a prescribed boundary
impedance can be prepared practically.

Why is it possible to prepare small balls with the prescribed

boundary impedance?

(a) The scattering problem for such a ball has a solution and this solution
is unique. Therefore, such a ball can be practically prepared.

(b) The acoustically hard balls with ζ = ∞ do exist. The acoustically soft
balls with ζ = 0 do exist. The balls with an intermediate boundary
impedance should be possible to prepare.

Statement of the Scattering Problem in the Absence of the

Embedded Particles

L0u0 := [∇2 + k2n2
0(x)]u0 := [∇2 + k2 − q0(x)]u0 = 0 in R

3,

u0 = eikα·x + v0, lim
r→∞ r(v0r − ikv0) = 0.

Im n2
0(x) ≥ 0, α ∈ S2, k = const > 0.

L0G(x, y) = −δ(x− y) in R
3.

n2
0(x) = 1− k−2q0(x), q0(x) = k2 − k2n2

0(x), Im q0(x) ≤ 0,

n2
0(x) = 1 in D′ := R

3\D, q0(x) = 0 in D′.

Many-body Scattering Problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L0uM = 0 in Ω′ := R
3\

M⋃
m=1

Dm; Dm = Bm(xm, a)

∂uM
∂N

= ζmuM on Sm := ∂Dm, ζm =
h(xm)

aκ
, 0 ≤ κ < 1,

uM = u0 + vM ,
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where N is the outer unit normal to Sm, and h(x) ∈ C(D) is an arbitrary
function, such that

h = h1 + ih2, h2 ≤ 0,

and ζm is boundary impedance,

d := min
m �=j

dist(xm, xj).

Basic Assumptions

Our basic assumptions are:

a� d� λ ,

N (Δ) :=
∑
xm∈Δ

1 =
1

a2−κ

∫
Δ

N(x)dx[1 + o(1)], a→ 0. (∗)

Here N(x)a−(2−κ) ≥ 0 is the density of the distribution of the particles,
d is the minimal distance between neighboring particles,

d = O(a(2−κ)/3). (∗∗)
M =M(a) ∼ O(a−(2−κ)), 0 ≤ κ < 1.

Since d−3 = O(M), relation (**) follows from (*).

Representation of the Solution

uM (x) = u0(x) +

M∑
m=1

∫
Sm

G(x, t)σm(t)dt

= u0(x) +

M∑
m=1

G(x, xm)Qm +

M∑
m=1

Jm.

Qm :=

∫
Sm

σm(t)dt, Jm :=

∫
Sm

[G(x, t) −G(x, xm)]σm(t)dt,

Im := |G(x, xm)Qm|.
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Basic Result:

|Jm| � Im , a→ 0; |x− xm| � a.

Impedance Boundary Condition

For the impedance boundary condition (bc) the limiting field u = u(x) solves
the integral equation:

u(x) = u0(x) −
∫
D

G(x, y)p(y)u(y)dy ,

where

p(y) = 4πN(y)h(y), Imp ≤ 0; ζm =
h(xm)

aκ
, 0 ≤ κ < 1.

If the small bodies Dm are of an arbitrary shape and |Sm| = ca2, then the
factor 4π is replaced by the factor c. This factor may depend on m, if the
small bodies are not identical.

Effective Field 1

If |Jm| � Im, then, as a→ 0, one has

uM (x) ∼ u0(x) +

M∑
m=1

G(x, xm)Qm, a� 1, |x− xm| � a.

Define effective (self-consistent) field acting on the m-th particle:

ue := u(m)
e := uM (x)−G(x, xm)Qm,

If |x− xm| ≥ a, then ue ∼ uM as a→ 0.

We prove the following formula:

Qm ∼ −4πue(xm)h(xm)a2−κ, a→ 0.

Effective Field 2

The equation for the effective field ue(x), as a→ 0, is

ue(x) = u0(x) − 4π

M∑
m=1

G(x, xm)ue(xm)hma
2−κ,
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where hm := h(xm) and the term with xm is dropped if |x−xm| ≤ a. Here
hm are known, but um := ue(xm) are unknown.

To calculate um I use a linear algebraic system (LAS):

uj = u0j − 4πa2−κ
M∑

m=1,m �=j
G(xj , xm)hmum, 1 ≤ j ≤M.

The order of this system will be substantially reduced.

Reduction of the Order of the LAS.

To reduce the order M of the LAS, consider a partition of D into a union
of small non-intersecting cubes Δp, 1 ≤ p ≤ P, P � M , yp ∈ Δp,
diam Δp � d. Then the LAS for up is:

uq = u0q − 4π
P∑
p�=q

G(yq, yp)h(yp)upN(yp)|Δp|, (∗)

where 1 ≤ q ≤ P, P �M, uq = u(yq), u0q = u0(yq),

a2−κ
∑

xm∈Δp

1 = N(yp)|Δp|

The LAS (*) is used for efficient numerical solution of the many-body scat-
tering problem when the scatterers are small.

How Efficient is This Reduction?

Let the small particles be distributed in a cube with side L = 10−1m,

a = 10−8m, d = 10−6m. Then M ≈ (Ld )3 = 1015.

Let the side b of the partition cubes Δp be b = a1/6 = 10−
4
3 m.

Then P =
(
L
b

)3
= 10. The reduction of the order M of the LAS in this

example is from 1015 to 10 .
Of course, there is a question of the accuracy of the approximation of

the solution of the original LAS by the solution of the reduced order LAS.

If b = a1/4 = 10−2m, then P =
(
L
b

)3
= 103. In this case the reduction

of the order M of the LAS is from 1015 to 103.
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Numerical experiments allow one to find a and b for which
P gives the accurate approximation of u.

Derivation of the Asymptotic Formula for Qm

We start with the exact boundary equation:

ueN − ζmue +
Amσm − σm

2
− ζmTmσm = 0 on Sm.

Amσm := 2

∫
Sm

∂G(s, t)

∂Ns
σm(t)dt, Tmσm :=

∫
Sm

G(s, t)σm(t)dt.

G(x, y) =
1

4π|x− y| [1 +O(|x − y|)], |x− y| → 0.

4

3
πa3Δue(xm)− ζm4πa2ue(xm) = Qm + ζm

∫
Sm

ds

∫
Sm

σm(t)dt

4π|s− t| ,∫
Sm

Amσmdt = − ∫
Sm

σmdt,

∫
Sm

ds

4π|s− t| = a

4

3
πa3Δue(xm)− 4πζmue(xm)a2 = Qm(1 + ζma).

Qm =
a3
[
4π
3 Δue(xm)− 4πue(xm)ζma

−1
]

1 + ζma
.

If ζm = h(xm)
aκ , κ < 1, then

Qm ∼ −4πue(xm)h(xm)a2−κ.

Asymptotic Formula for σm

Qm ∼ −4πue(xm)h(xm)a2−κ.

Qm =

∫
S

σmds ∼ 4πa2σm.
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If a→ 0, then

σm ∼ −h(xm)ue(xm)a−κ

Why is Im � |Jm|?

|G(x, xm)Qm| = Im = O

(
a2−κ

d

)
,

Jm = O

(
aa2−κ

d2

)
= O

(
a

d

a2−κ

d

)
,

a

d
� 1.

Thus, Jm/Im = O
(
a
d

)
. Consequently,

Im � Jm if a� d� λ.

Calculating the Wave Field

Formula for calculating the field uM (x) is:

uM (x) = u0(x) − 4π

M∑
m=1

G(x, xm)h(xm)ue(xm)a2−κ.

This formula is valid everywhere outside small particles. Since the input
from one small particle into uM is not more than O(a2−κ), this input tends
to zero as a→ 0, κ ∈ [0, 1).

Limiting Equation for u as a → 0

4π

M∑
m=1

G(x, xm)h(xm)ue(xm)a2−κ ∼ 4π

P∑
p=1

G(x, y(p))h(y(p))ue(y
(p))

× a2−κ
∑

xm∈Δp

1 = 4π

P∑
p=1

G(x, y(p))h(y(p))ue(y
(p))N(y(p))|Δp|(1 + εp)

→
∫
D

G(x, y)p(y)u(y)dy, p(y) := 4πh(y)N(y).

u(x) = u0(x) −
∫
D

G(x, y)p(y)u(y)dy.
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An Auxiliary Lemma

Lemma. If f ∈ C(D) and xm are distributed in D so that

N (�) =
1

ϕ(a)

∫
�
N(x)dx[1 + o(1)], a→ 0,

for any subdomain � ⊂ D, where ϕ(a) ≥ 0 is a continuous, monotone,
strictly growing function, ϕ(0) = 0, then

lim
a→0

∑
xm∈D

f(xm)ϕ(a) =

∫
D

f(x)N(x)dx.

Remark: This lemma holds for bounded f with the set of discontinuities
of Lebesgue’s measure zero. It can be generalized to a class of unbounded f .

Proof of the Lemma

Proof. Let D = ∪p�p be a partition of D into a union of small cubes
�p, having no common interior points. Let |�p| denote the volume of �p,
δ := maxp diam �p, and y

(p) be the center of the cube �p. One has

lim
a→0

∑
xm∈D

f(xm)ϕ(a) = lim
a→0

∑
y(p)∈�p

f(y(p))ϕ(a)
∑

xm∈�p

1

= lim
a→0

∑
f(y(p))N(y(p))|�p|[1 + o(1)] =

∫
D

f(x)N(x)dx.

The last equality holds since the preceding sum is a Riemannian sum for
the continuous function f(x)N(x) in the bounded domain D. Thus, the
Lemma is proved. �

Equations for the Limiting Field u

u(x) = u0(x) −
∫
D

G(x, y)p(y)u(y)dy, p(x) = 4πh(x)N(x).

Lu := [∇2 + k2n2(x)]u = 0, n2(x) = n2
0(x)−

p(x)

k2
.

We have:

k2[n2
0(x) − n2(x)] = p(x).



Appendix A5: How to Create Materials with a Desired Refraction Coefficient? 273

Creating Materials with a Desired Refraction Coefficient

Step 1.

{n2(x), n2
0(x)} ⇒ p(x) = k2[n2

0(x) − n2(x)].

Step 2. Given p(x) = p1 + ip2, find {h(x), N(x)} from the equation
4πh(x)N(x) = p(x). One has

h1(x) =
p1(x)

4πN(x)
, h2(x) =

p2(x)

4πN(x)
.

There are many solutions, becauseN(x) ≥ 0 can be arbitrary. For example,
one can take N(x) = const > 0.

Step 3.

EmbedN (Δp) =
1

a2−κ

∫
Δp
N(x)dx small particles in Δp, where

⋃
pΔp = D.

Physical properties of these particles are given by their boundary

impedances ζm = h(y(p))
aκ for all xm ∈ Δp.

The distance between neighboring particles is d = O(a
2−κ
3 ).

Main Theorems

Theorem 1. The resulting new material has the desired function
n2(x) with the error which tends to zero as a→ 0.

Denote by Vp the total volume of the embedded particles. Then

Vp = N(D)
4πa3

3
= O(a−2+κ)O(a3) = O(a1+κ), a→ 0.

Theorem 2. The total volume Vp of the embedded particles in the
limit a→ 0 is equal to zero.

Technological problems

The first technological problem is:

How can one embed many, namely M = M(a), small balls in a given
material so that the centers of the balls are points xm distributed as desired?

The stereolitography process and chemical methods for growing small
particles solve this problem.
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The second technological problem is:

How does one prepare a ball Bm of small radius a with boundary impedance

ζm = h(xm)
aκ , 0 ≤ κ ≤ 1, which has a desired frequency dependence?

Remark: It is not necessary to have large boundary impedance: if κ = 0, or

κ = O
(

1
| ln a|

)
, then ζm is bounded. However, if κ = 0, then M = O(a−2),

so more particles have to be embedded.

Playing with Numbers

N ∼ 106; N ∼ 1

a2−κ
; d ∼ a(2−κ)/3.

N = 106; κ = 2/3, a = 10−4.5, d = 10−2.

N = 106; κ = 1/2, a = 10−4, d = 10−2.

The difference between the solution of the limiting integral equation for the
effective field and the solution to the linear algebraic system for ue(xm) is
O(1/n), where 1/n is the side of a partition cube.

Spatial Dispersion. Negative Refraction

u =
∑
k

a(k)ei[k·r−ω(k)t], |k − k̄|+ |ω(k)− ω(k̄)| < δ

vgroup := vg = ∇kω(k), vphase := vp =
ω

|k|k
0.

∇k|k| = k0 :=
k

|k| ;
ω2n2

c2
= k2,

ωn

c
= |k|.

(
n

c
+
ω

c

∂n

∂ω

)
∇kω = k0.

{vg = −const · vp, const > 0} ⇐⇒ negative refraction.

n+ ω
∂n

∂ω
< 0

Isotropic Medium

If ω > 0, ω = ω(k), k := |k|, then vp · vg = ω′(k)ωk < 0, provided that

ω′(k) < 0.
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Indeed,

vg := ∇kω(k) = ω′(k)k0, vp :=
ω

k
k0

∇kω(k) · vp = ω′(k)
ω

k
, k0 := k/k.

Terminology:

Negative refraction means vg is directed opposite to vp;
Negative index means that ε < 0 and μ < 0.

Wave-focusing Materials

This theory gives a method for preparing materials with a desired
radiation pattern, wave-focusing materials.

[∇2 + k2 − q(x)]u = 0 in R
3, u = eikα·x + v := u0 + v,

v = A(β)
eikr

r
+ o

(
1

r

)
, r = |x| → ∞,

x

r
:= β,

A(β) = − 1

4π

∫
D

e−ikβ·xh(x)dx, h(x) := q(x)u(x, α).

Here α is a unit vector in the direction of propagation of the incident wave,
A(β) is the scattering amplitude (radiation pattern). We assume that α
and k > 0 are fixed.

Under-determined Inverse Scattering Problem

IP (inverse problem): Given f(β) ∈ L2(S2), α ∈ S2, k > 0, and ε > 0,
(D ⊂ R

3 is a bounded domain), find q ∈ L2(D) such that

‖f(β)−A(β)‖L2(S2) < ε. (1)

A priori it is not clear that this problem has a solution. We prove
that it has a solution.

If this IP has a solution, then it has infinitely many solutions
because small variations of q lead to small variations of A(β).

Theorem A. The set
{∫

D
e−ikβ·xh(x)dx

}
∀h∈L2(D)

is dense in L2(S2)
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Corollary 1. Given f ∈ L2(S2) and ε > 0, arbitrarily small, one can find
h ∈ L2(D) such that

∥∥∥∥f(β) + 1

4π

∫
D

e−ikβ·xh(x)dx
∥∥∥∥ < ε.

Theorem B. The set {q(x)u(x, α)}∀q∈L2(D) is dense in L2(D).

Corollary 2. Given h ∈ L2(D) and ε > 0, arbitrarily small, one can find
q ∈ L2(D) such that

‖h(x)− q(x)u(x, α)‖L2(D) < ε.

Since the scattering amplitude A(β) = − 1
4π

∫
D
e−ikβ·xh(x)dx depends con-

tinuously on h, the inverse problem IP is solved by Theorems A
and B.

Proof of Theorem A.

Assume the contrary. Then ∃ψ ∈ L2(S2) such that

0 =

∫
S2

dβψ(β)

∫
D

e−ikβ·xh(x)dx ∀h ∈ L2(D).

Changing the order of integration, one gets:
∫
S2

dβψ(β)e−ikβ·x = 0 ∀x ∈ D ⊂ R
3,

and ∫ ∞

0

dλλ2
∫
S2

dβe−iλβ·xψ(β)
δ(λ − k)

k2
= 0 ∀x ∈ R

3.

By the injectivity of the Fourier transform, one gets ψ(β) δ(λ−k)k2 = 0. There-
fore, ψ(β) = 0. Theorem A is proved. �

Proof of Theorem B.

Given h ∈ L2(D), define

u := u0 −
∫
D

g(x, y)h(y)dy, g :=
eik|x−y|

4π|x− y| , (2)

q(x) :=
h(x)

u(x)
. (3)
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If q ∈ L2(D), then this q solves the problem, and u, defined in (2), is the
scattering solution:

u = u0 −
∫
D

g(x, y)q(y)u(y)dy, (4)

and

A(β) = − 1

4π

∫
D

e−ikβ·yh(y)dy.

If q is not in L2(D), then the null set
N := {x : x ∈ D, u(x) = 0} is non-void. Let

Nδ := {x : |u(x)| < δ, x ∈ D}, Dδ := D\Nδ.

Claim 1. Let hδ =
{
h, in Dδ,
0, in Nδ.

Then ‖hδ − h‖L2(D) < o(1), qδ :={
hδ
uδ
, in Dδ,

0, in Nδ,
qδ ∈ L∞(D), uδ := u0 −

∫
D ghδdy .

Proof of Claim 1. The set N generically is a line l = {x : u1(x) = 0,
u2(x) = 0}, where u1 = �u and u2 = �u. Consider a tubular neighborhood
of this line, ρ(x, l) ≤ δ. Let the origin O be chosen on l, s3 be the Cartesian
coordinate along the tangent to l, and s1 = u1, s2 = u2 are coordinates in
the plane orthogonal to l, sj-axis is directed along ∇uj |l, j = 1, 2.

The Jacobian J of the transformation (x1, x2, x3) �→ (s1, s2, s3) is non-
singular, |J |+ |J −1| ≤ c, because ∇u1 and ∇u2 are linearly independent.
Define

hδ :=

{
h, in Dδ,

0, in Nδ,
uδ := u0 −

∫
D

g(x, y)hδ(y)dy ,

qδ :=

⎧⎪⎨
⎪⎩
hδ
uδ
, in Dδ,

0, in Nδ.

‖h− hδ‖L2(D) ≤ o(1), max |h− hδ| ≤ c .

One has uδ = u0 −
∫
D ghdy +

∫
D g(x, y)(h− hδ)dy,

|uδ(x)| ≥ |u(x)| − c

∫
Nδ

dy

4π|x− y| ≥ δ − I(δ), x ∈ Dδ, c = max
x∈Nδ

|h(x)|.

If one proves, that I(δ) = o(δ), δ → 0, ∀x ∈ Dδ then qδ ∈ L∞(D), and
Claim 1 is proved. �
Claim 2:

I(δ) = O(δ2| ln(δ)|), δ → 0.
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Proof of Claim 2.

∫
Nδ

dy

|x− y| ≤
∫
Nδ

dy

|y| = c1

∫ c2δ

0

ρ

∫ 1

0

ds3√
ρ2 + s23

dρ

= c1

∫ c2δ

0

dρρ ln(s3 +
√
ρ2 + s23)|10 ≤ c3

∫ c2δ

0

ρ ln
1

ρ
dρ

≤ O(δ2| ln(δ)|).

The condition |∇uj |l ≥ c > 0, j = 1, 2, implies that a tubular neighborhood

of the line l, Nδ = {x :
√|u1|2 + |u2|2 ≤ δ}, is included in a region {x :

|x| ≤ c2δ} and includes a region {x : |x| ≤ c′2δ}. This follows from the
estimates

c′2ρ ≤ |u(x)| = |∇u(ξ) · (x− ξ)| ≤ c2ρ.

Here ξ ∈ l, x is a point on a plane passing through ξ and orthogonal to l,
ρ = |x− ξ|, and δ > 0 is sufficiently small, so that the terms of order ρ2 are
negligible,

c2 = max
ξ∈l

|∇u(ξ)|, c′2 = min
ξ∈l

|∇u(ξ)|.

Claim 2, and, therefore, Theorem B are proved. �

Calculation of h given f(β) and ε > 0

Let {φj} be a basis in L2(D),

hn =

n∑
j=1

c
(n)
j φj ,

ψj(β) := − 1

4π

∫
D

e−ikβ·xφj(x)dx.

Consider the problem:

∥∥∥∥∥∥f(β)−
n∑
j=1

c
(n)
j ψj(β)

∥∥∥∥∥∥ = min.

A necessary condition for the minimum is a linear system for c
(n)
j .
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Appendix B

Optimal with Respect to Accuracy
Algorithms for Calculation of

Multidimensional Weakly Singular
Integrals and Applications to
Calculation of Capacitances of
Conductors of Arbitrary Shapes

In this appendix cubature formulas, asymptotically optimal with respect

to accuracy, are derived for calculating multidimensional weakly singular

integrals. They are used for developing a universal code for calculating

capacitances of conductors of arbitrary shapes. The presentation follows
[10].

B.1 Introduction

Asymptotically optimal and optimal with respect to order (to accuracy

and to complexity) algorithms for calculating multidimensional singular

integrals have been constructed in [12] on Hölder and Sobolev classes of

functions.

Although multidimensional weakly singular integrals are used in many

applications, optimal methods for calculating these integrals are not well

developed.

In [12] asymptotically optimal with respect to accuracy methods for

calculating integrals of the form

2π∫
0

2π∫
0

f(σ1, σ2)

∣∣∣∣ctg σ1 − s1
2

∣∣∣∣
γ1 ∣∣∣∣ctg σ2 − s2

2

∣∣∣∣
γ2

dσ1dσ2,

0 < γ1, γ2 < 1, were constructed on Hölder and Sobolev classes.

281
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Development of optimal methods for calculating multidimensional

weakly singular integrals is an important problem. Construction of efficient

cubature formulas for calculating weakly singular integrals for calculating

capacitances of conductors of arbitrary shapes by iterative methods pro-

posed in [100] and [113] is important in many applications, for example, in

wave scattering by small bodies of arbitrary shapes and in antenna theory.

A bibliography on methods for calculating capacitances and polarizability

tensors is contained in [113].

Here the method proposed in [12] is generalized to multidimensional

weakly singular integrals and applications of optimal with respect to order

cubature formulas for calculating weakly singular integrals on Lyapunov

surfaces are given. The results are used for constructing a universal code

for calculating capacitances of conductors of arbitrary shapes.

In the first part of the Appendix optimal methods for calculating inte-

grals of the types:

Kf ≡
2π∫
0

2π∫
0

f(σ1, σ2)dσ1dσ2(
sin2

(
σ1−s1

2

)
+ sin2

(
σ2−s2

2

))λ , 0 ≤ s1, s2 ≤ 2π; (B.1)

and

Tf ≡
1∫

−1

1∫
−1

f(τ1, τ2)dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

, −1 ≤ t1, t2 ≤ 1, 0 < λ < 1,

(B.2)

are constructed for Hölder and Sobolev classes of functions.

Our results for integrals (B.1) can be generalized to the integrals with

other periodic kernels and functions. The development of cubature formulas

for integrals (B.1) is of considerable interest because the results are appli-

cable to integrals with weakly singular kernels defined on closed Lyapunov

surfaces.

It will be clear from our arguments, that the results can be generalized

to multidimensional integrals.

In Section B.9 of the Appendix iterative methods for calculating capaci-

tances of conductors of arbitrary shapes are developed. A general numerical

method for calculating these capacitances is developed, and some numerical

results are given.
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B.2 Definitions of Optimality

Various definitions of optimality of numerical methods and a detailed bibli-

ography can be found in [7], [154]. Let us recall the definitions of algorithms,

optimal with respect to accuracy, for calculating weakly singular integrals.

Consider the quadrature formula:

Tf =

n1∑
k1=1

n2∑
k2=1

ρ1∑
l1=0

ρ2∑
l2=0

pk1k2l1l2(t1, t2)f
(l1,l2)(xk1 , yk2)

+Rn1n2(f ; pk1k2l1l2 ;xk1 , yk2 ; t1, t2),

(B.3)

where coefficients pk1k2l1l2(t1, t2) and nodes (xk1 , yk2) are arbitrary. Here

f (l1,l2)(s1, s2) = ∂l1+l2f(s1, s2)/∂s
l1
1 ∂s

l2
2 .

The error of quadrature formula (B.3) is defined as

Rn1n2(f ; pk1k2l1l2 ;xk1 , yk2) = sup
(t1,t2)∈[−1,1]2

|Rn1n2(f ; pk1k2l1l2 ;xk1 , yk2 ; t1, t2)|.

The error of quadrature formula (B.3) on the class Ψ is defined as

Rn1n2(Ψ; pk1k2l1l2 ;xk1 , yk2) = sup
f∈Ψ

Rn1n2(f, pk1k2l1l2 ;xk1 , yk2).

Define the functional

ζn1n2(Ψ) = inf
pk1k2l1l2

;xk1
,yk2

Rn1n2(Ψ; pk1k2l1l2 ;xk1 , yk2).

The quadrature rformula with the coefficients p∗k1k2l1l2 and the nodes

(x∗k1 , y
∗
k2
) is optimal, asymptotically optimal, optimal with respect to order

on the class Ψ among all quadrature rules of type (B.3) provided that:

Rn1n2(Ψ; p∗k1k2l1l2 ;x
∗
k1
, y∗k2)

ζn1n2(Ψ)
= 1,∼ 1,� 1, n1, n2 → ∞.

The symbol α � β means Aα ≤ β ≤ Bα, where 0 < A,B <∞.

Consider the quadrature rule

Tf =

n∑
k=1

pk(t1, t2)f(Mk) +Rn(f ; pk;Mk; t1, t2), (B.4)

where coefficients pk(t1, t2) and nodes (Mk) are arbitrary.

The error of quadrature formula (B.4) is defined as

Rn(f ; pk;Mk) = sup
(t1,t2)∈[−1,1]2

|Rn(f ; pk;Mk; t1, t2)|.
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The error of quadrature rule (B.4) on the class Ψ is defined as

Rn(Ψ; pk;Mk) = sup
f∈Ψ

Rn(f, pk;Mk).

Define the functional

ζn(Ψ) = inf
pk;Mk

Rn(Ψ; pk;Mk).

The quadrature rule with the coefficients p∗k and the nodes (M∗
k ) is

optimal, asymptotically optimal, optimal with respect to order on the class

Ψ among all quadrature rules of the type (B.4) provided that:

Rn(Ψ; p∗k;M
∗
k )

ζn(Ψ)
= 1,∼ 1,� 1, n→ ∞. (B.5)

By Rn1n2(Ψ) the error of optimal cubature formulas on the class Ψ is

defined. One has Rn1n2(Ψ) = ζn1n2(Ψ).

B.3 Classes of Functions

In this section, we list several classes of functions which are used below (cf
[75], [63]).

A function f is defined on A = [a, b] or on A = K, where K is a unit

circle, satisfies the Hölder condition with constant M and exponent α, or

belongs to the class Hα(M), M > 0, 0 < α ≤ 1, if |f(x′) − f(x′′)| ≤
M |x′ − x′′|α for any x′, x′′ ∈ A.

ClassHω, where ω(h) is a modulus of continuity, consists of all functions

f ∈ C(A) with the property |f(x1)− f(x2)| ≤Mω(|x1 − x2|), x1, x2 ∈ A.

Class W r(M) consists of functions f ∈ C(A) which have continuous

derivatives f ′, f ′′, . . . , f (r−1) on A, and a piecewise-continuous derivative

f (r) on A satisfying maxx∈[a,b]|f (r)(x)| ≤M .

Class W r
p (M), r = 1, 2 . . . , 1 ≤ p ≤ ∞, consists of functions f(t), de-

fined on a segment [a, b] or on A = K, that have continuous derivatives

f ′, f ′′, . . . , f (r−1), and an integrable derivative f (r) such that

⎡
⎣∫
A

|f (r)(x)|pdx
⎤
⎦
1/p

≤M.

Class W r
α(M), r = 1, 2 . . . , 0 < α ≤ 1, consists of functions f(t), de-

fined on a segment [a,b] or on A = K, which have continuous derivatives
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f ′, f ′′, . . . , f (r), such that

|f (r)(x1)− f (r)(x2)| ≤M |x1 − x2|α.
A function f(x1, x2, . . . , xl), l = 2, 3, . . ., defined on A =

[a1, b2; a2, b2; . . . ; al, bl] or on A = K1 × K2 × · · · × Kl, where Ki, i =

1, 2, . . . , l, are unit circles, satisfying Hölder conditions with constant M

and exponent αi, i = 1, 2, . . . , l, or belongs to the class Hα1,...,αl
(M),M >

0, 0 < α ≤ 1, i = 1, 2, . . . , l, if

|f(x1, x2, . . . , xl)− f(y1, y2, . . . , yl)| ≤M(|x1 − y1|α1 + · · ·+ |xl − yl|αl).

Let ω, ωi, where i = 1, 2, . . . , l, l = 1, 2, . . ., be moduli of continuity.

Class Hω1,...,ωl
(M), consists of all functions f ∈ C(A), A =

[a1, b2; a2, b2; . . . ; al, bl] or A = K1 ×K2 × · · · ×Kl, with the property

|f(x1, x2, . . . , xl)− f(y1, y2, . . . , yl)| ≤M(ω1(|x1− y1|)+ · · ·+ωl(|xl− yl|)).
Let Hω

j (A), j = 1, 2, 3, A = [a1, b2; a2, b2; . . . ; al, bl] or A = K1 × K2 ×
· · · ×Kl, l = 2, 3, . . ., be the class of functions f(x1, x2, . . . , xl) defined on

A and such that

|f(x)− f(y)| ≤ ω(ρj(x, y)), j = 1, 2, 3,

where x = (x1, . . . , xl), y = (y1, . . . , yl), ρ1(x, y) = max1≤i≤l(|xi −
yi|), ρ2(x, y) =

∑l
i=1 |xi − yi|, ρ3(x, y) = [

∑l
i=1 |xi − yi|2]1/2.

Let Hα
j (A), j = 1, 2, 3, A = [a1, b2; a2, b2; . . . ; al, bl] or A = K1 × K2 ×

· · · ×Kl, l = 2, 3, . . ., be the class of functions f(x1, x2, . . . , xl) defined on

A and such that

|f(x)− f(y)| ≤ (ρj(x, y))
α, j = 1, 2, 3.

More general is the class Hα
ρj(A), j = 1, 2, 3. It consists of all func-

tions f(x) which can be represented as f(x) = ρ(x)g(x), where g(x) ∈
Hα
j (A), j = 1, 2, 3, and ρ(x) is a nonnegative weight function.

Let Zωj (A), j = 1, 2, 3, be the class of functions f(x1, x2, . . . , xl) defined

on A and satisfying

|f(x) + f(y)− 2f((x+ y)/2)| ≤ ω(ρj(x, y)/2), j = 1, 2, 3.

Let Zαj (A), j = 1, 2, 3, be the class of functions f(x1, x2, . . . , xl) defined

on A and satisfying

|f(x) + f(y)− 2f((x+ y)/2)| ≤ (ρj(x, y)/2)
α, j = 1, 2, 3.
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Class Zαρj(A), j = 1, 2, 3, consists of all functions f(x) which can be

represented as f(x) = ρ(x)g(x), where g(x) ∈ Zαj (A), j = 1, 2, 3, and ρ(x)

is a nonnegative weight function.

Let W r1,...,rl(M), l = 1, 2, . . ., be the class of functions f(x1, x2, . . . , xl)

defined on a domain A, which have continuous partial derivatives

∂|v|f(x1, . . . , xl)/∂xv11 · · · ∂xvll , 0 ≤ |v| ≤ r − 1, |v| = v1 + · · · + vl, ri ≥
vi ≥ 0, i = 1, 2, . . . , l, r = r1 + · · · + rl and all piece-continuous deriva-

tives of order r, satisfying ‖∂rf(x1, . . . , xl)/∂xr11 · · · ∂xrll ‖C ≤ M and

‖∂rif(0, . . . , 0, xi, 0, . . . , 0)/∂xrii ‖C ≤M, i = 1, . . . , l.

Let W r1,...,rl
p (M), l = 1, 2, . . . , 1 ≤ p ≤ ∞ be the class of functions

f(x1, x2, . . . , xl), defined on a domain A = [a1, b1; . . . ; al, bl], with continu-

ous partial derivatives ∂|v|f(x1, . . . , xl)/∂xv11 · · · ∂xvll , 0 ≤ |v| ≤ r − 1, |v| =
v1 + · · ·+ vl, ri ≥ vi ≥ 0, i = 1, 2, . . . , l, r = r1 + · · ·+ rl, and all derivatives

of order r, satisfying∥∥∥∂rf(x1, . . . , xl)/∂xr11 ∂xr22 · · ·∂xrll
∥∥∥
Lp(A)

≤M,

∥∥∥∂r1+v2+···+vlf
(
x1, 0, . . . , 0

)
/∂xr11 ∂x

v2
2 · · ·∂xvll

∥∥∥
Lp([a1,b1])

≤M, |v2|+ |v3|+ · · ·+ |vl| ≤ r − r1 − 1;

· · · · · · · · ·
∥∥∥∂v1+···+vl−1+rlf

(
0, . . . , 0, xl

)
/∂xv11 ∂x

v2
2 . . . ∂x

vl−1

l−1 ∂x
rl
l

∥∥∥
Lp([al,bl])

≤M, |v1|+ |v2|+ · · ·+ |vl−1| ≤ r − rl−1 − 1.

Let A = [a1, b2; a2, b2; . . . ; al, bl] or A = K1×K2× · · ·×Kl. Let C
r(M)

be the class of functions f(x1, x2, . . . , xl) which are defined in A and which

have continuous partial derivatives of order r. Partial derivatives of order

r satisfy the conditions

‖∂
|v|f(x1, . . . , xl)
∂xv11 · · · ∂xvll

‖C ≤M

for any v = (v1, . . . , vl), where vi ≥ 0, i = 1, 2, . . . , l are integer and∑l
i=1 vi = r.

By Ψ̃ we denote the set of periodic functions of the class Ψ.

The Lyapunov spheres ([38]) are defined as regions bounded by a finite

number of closed surfaces satisfying the three Lyapunov conditions:



Auxiliary Statements 287

1. At each point of the surface a tangent plane (and, therefore, a normal)

exist.

2. If Θ is the angle between the normals at the points m1 and m2, and

r is the distance between these points, then

Θ < Arλ, 0 < λ ≤ 1,

where A and λ are positive numbers which do not depend on m1 and m2.

3. For all points of the surface, a number d > 0 exists such that there

is exactly one point at which a straight line, parallel to the normal at the

surface point m, intersects the surface inside a sphere of radius d centered

at m.

Let S be a Lyapunov sphere, and N be the exterior normal to this

sphere. We introduce a local system of Cartesian coordinates (χ, η, ζ),

whose origin is located at an arbitrary point m0 of S, the ζ axis is directed

along the normal N0 at the point m0, and the χ and η axes lie in the

tangential plane. In a sufficiently small neighborhood of m0, the equation

of the surface S in the local coordinates (χ, η, ζ) has the form

ζ = F (χ, η).

Definition B.1 The surface S belongs to the class Lk(B,α) if F (χ, η) ∈
W k
α (B), and the constants B and α do not depend on the choice of the

point m0.

B.4 Auxiliary Statements

We need the following known facts from the theory of quadrature and cu-

bature formulas. These facts can be found, for example, in [75], [63], [21],
[55].

Lemma B.4 Let Ψ1 be the class of functions W r
p (1), 1, 2, . . . , 1 ≤ p ≤

∞, 0 ≤ t ≤ 1, f(t) ∈ Ψ1, and the quadrature rule

1∫
0

f(t)dt =

n∑
k=1

pkf(tk) +Rn(f)

be exact on all the polynomials of order up to p−1, and has error Rn(Ψ1) on

the class Ψ1. Let Ψ2 be the class of functions W r
p (1), r = 1, 2, . . . , 1 ≤
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p ≤ ∞, a ≤ x ≤ b, and g(x) ∈W r
p (1). Then the quadrature formula

b∫
a

g(x)dx = (b− a)

n∑
k=1

pkg(a+ (b − a)tk) + Rn(g)

has error Rn(Ψ2) on the class of functions Ψ2 and

Rn(Ψ2) = (b − a)r+1−1/pRn(Ψ1).

Theorem B.2 ([75]) Among quadrature formulas

1∫
0

f(x)dx =
m∑
k=1

ρ∑
l=0

pklf
(l)(xk) +R(f) ≡ L(f) +R(f)

the best formula for the class W r
p (1) (1 ≤ p ≤ ∞) with ρ = r − 1 and

r = 1, 2, · · · , or ρ = r − 2 and r = 2, 4, 6, · · · , is the unique formula defined

by the following nodes x∗k and coefficients p∗kl:

x∗k = h(2(k − 1) + [Rrq(1)]
1/r), k = 1, 2, . . . ,m,

p∗kl = (−1)lp∗ml = hl+1

{
(−1)l

(l + 1)!
[Rrq(1)]

(l+1)/r +
1

r!
R(r−1−1)
rq (1)

}
,

(l = 0, 1, . . . , ρ), p∗k,2v =
2h2v+1

r!
R(r−2v−1)
rq (1),(

k = 2, 3, . . . ,m− 1; v = 0, 1, . . . ,

[
r − 1

2

])
,

p∗k,2v+1 = 0

(
k = 2, 3, . . . ,m− 1; v = 0, 1, . . . ,

[
r − 2

2

])
,

h = 2−1(m− 1 + [Rrq(1)]
1/r)−1,

and Rrq(t) is the Chebyshev polynomial tr +
r−1∑
i=0

βit
i, deviating least from

zero in the norm Lq(−1, 1), where p−1 + q−1 = 1. Here

ζn[W
r
p (1)] = Rn[W

r
p (1)] =

Rrq(1)

2rr! q
√
rq + 1(m− 1 + [Rrq(1)]1/r)r

.
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Let a function f(x, y) be given on a rectangle D = [a, b; c, d]. Consider

the cubature formula

∫∫
D

f(x, y)dxdy =

m∑
k=1

n∑
i=1

pkif(xk, yi) +Rmn(f), (B.6)

defined by a vector (X,Y, P ) of a nodes a ≤ x1 < x2 < · · · < xm ≤ b,

c ≤ y1 < y2 < · · · < yn ≤ d, and coefficients pki.

Theorem B.3 ([75]) Among all quadrature formulas of the form of (B.6)

the formula

∫∫
D

f(x, y)dxdy = 4hq

m∑
k=1

n∑
i=1

f(a+ (2k − 1)h, c+ (2i− 1)q) +Rmn(f),

where h = b−a
2m , q = d−c

2n , is optimal on the classes Hω1,ω2(D) and Hω
3 (D).

In addition

Rmn[Hω1,ω2(D)] = 4mn[q

h∫
0

ω1(t)dt+ h

q∫
0

ω2(t)dt];

Rmn[H
ω
3 (D)] = 4mn

q∫
0

h∫
0

ω(
√
t2 + τ2)dtdτ.

Consider the cubature formulas of the form:

∫∫
D

p(x, y)f(x, y)dxdy =

N∑
k=1

pkf(Mk) +R(f), (B.7)

where p(x, y) is a nonnegative and bounded onD function, pk,Mk(Mk ∈ D)

are coefficients and nodes.

Theorem B.4 ([75]) Let p(x, y) be a nonnegative bounded weight func-

tion. If RN [Hα
p,j(D)] and RN [Zαp,j(D)], where j = 1, 2, 3, and 0 < α ≤ 1,

are the errors of optimal formulas (B.7) on the classes Hα
p,j(D) and

Zαp,j(D), respectively, then

lim
N→∞

Nα/2RN [Hα
p,j(D)] = lim

N→∞
Nα/22RN [Zαp,j(D)]
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= Dj

⎡
⎣∫ ∫

D

(p(x, y))2/(2+α)dxdy

⎤
⎦
(2+α)/α

, j = 1, 2, 3,

where D1 = 12
2+α (

1
2
√
3
)(2+α)/2

π/6∫
0

dϕ
cos2+α ϕ , D2 = 21−α/(2 + α), and D3 =

21−0.5α/(2 + α).

If j = 2, then the conclusion holds for n-dimensional cubature formulas.

Remark B.1 Theorem B.3 is generalized to the case of unbounded

weights p(x, y) in [11].

We will use the following result (see, e.g., [8]):

Lemma B.5 Let H be a linear metric space, F be a bounded, closed, con-

vex, centrally symmetric set with center of symmetry θ at the origin, and

L(f), l1(f), . . . , lN(f), be some linear functionals. Let S(l1(f), . . . , lN (f))

be some method for calculating the functional L(f) using functionals

(l1(f), . . . , lN (f)), and S be the set of all such methods. Then the num-

bers D1, . . . , DN exist such that

sup
f∈F

|L(f)−
N∑
k=1

Dklk(f)| = inf
S

sup
f∈F

|L(f)− S(l1(f), . . . , lN(f))|. (B.8)

This means that among the best methods for calculating functional L(f):

L(f) ≈ S(l1(f), . . . , lN(f)), (B.9)

there is a linear method.

Proof. Let us associate with each f ∈ F a point (L(f), l1(f), . . . , lN (f)).

Let Y be a set of all such points (y0, . . . , yN) for f ∈ F .

From our assumptions, it follows that Y is a closed centrally symmetric

set with the center of symmetry at the origin.

Let (y0, 0, . . . , 0) be an extremal point of the set Y , and

D0 = sup
(z,0,...,0)∈Y

z = y0.

Because F is bounded, one has D0 < ∞, and because F is convex and

centrally symmetric with respect to the origin, one has D0 > 0.



Auxiliary Statements 291

Draw the support plane for the set Y through the point (D0, 0, . . . , 0) :

(y0 −D0) +

N∑
j=1

Cjyj = 0.

Since Y is centrally symmetric with respect to the origin, the plane

(y0 +D0) +

N∑
j=1

Cjyj = 0

is also a support plane for Y , and Y lies between these two planes.

Hence, we have for the points of Y the inequality:

|y0 −
N∑
j=1

Djyj | ≤ D0, Dj = −Cj .

The definition of yi implies

sup
f∈F

|L(f)−
N∑
j=1

Dj lj(f)| ≤ D0. (B.10)

Let f0 be an element F corresponding the point (D0, 0, . . . , 0). Then

S(l1(±f0), . . . , lN (±f0)) = S(0, . . . , 0). The right-hand side of (B.8) is not

less than

inf
S

max{|L(f0)− S(0, . . . , 0)|, |L(−f0)− S(0, . . . , 0)|}
= inf

a
max{|D0 − a|, |D0 + a|} = D0.

This and (B.10) imply that the right-hand side in (B.8) is not less that the

left-hand one. But the right-hand side of (B.8) can not be more than the

left-hand side of (B.8) because a set of methods S contains linear methods.

Lemma B.5 is proved. �

Corollary B.1 Among all functions for which the optimal method for

calculating L(t) has the greatest error for a given set of functionals, there

exists a function satisfying the conditions l1(f) = · · · = lN (f) = 0.

It follows from the proof that such a function is the function f0.



292 Calculation of Multidimensional Weakly Singular Integrals

B.5 Optimal Methods for Calculating Integrals of the

Form (B.1)

B.5.1 Lower bounds for the functionals ζnm and ζN

In this section we derive lower bounds for the functionals ζnm and ζN ,

defined in Section B.2 , for calculating integrals (B.1) by the cubature

formulas

Kf =

n1∑
k1=1

n2∑
k2=1

ρ1∑
l1=0

ρ2∑
l2=0

pk1k2l1l2(s1, s2)f
(l1,l2)(xk1 , xk2)

+Rn1n2(f ; pk1k2l1l2 ;xk1 , xk2 ; s1, s2), (B.11)

and

Kf =
N∑
k=1

pk(s1, s2)f(Mk) +RN (f ; pk;Mk; s1, s2) (B.12)

on Hölder and Sobolev classes.

Theorem B.5 Let Ψ = Hω1,ω2(D) or Ψ = Hω
3 (D), and calculate integral

(B.1) by formula (B.11) with ρ1 = ρ2 = 0. Then the inequality

ζn1n2 [Ψ] ≥ γ

π2
n1n2[q

h∫
0

ω1(t)dt+ h

q∫
0

ω2(t)dt],

where q = π
n2

, h = π
n1
, and

γ :=

2π∫
0

2π∫
0

ds1ds2

(sin2(s1/2) + sin2(s2/2))λ
(B.13)

is valid.

Corollary B.2 Let Ψ = Hαα(D) or Ψ = Hα
3 (D), and calculate integral

(B.1) by formula (B.11) with n1 = n2 = n and ρ1 = ρ2 = 0. Then the

inequality

ζnn[Ψ] ≥ 2γπα

(1 + α)nα

is valid.
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Proof of Theorem B.5. Denote by ψ(s1, s2) a nonnegative function

belonging to the class Hω1ω2(1) and vanishing at the nodes (xk1 , xk2), 1 ≤
k1 ≤ n1, 1 ≤ k2 ≤ n2.

One has:

Rn1n2(ψ; pk1k2 ;xk1 , xk2)

≥ 1

4π2

2π∫
0

2π∫
0

⎛
⎝

2π∫
0

2π∫
0

ψ(σ1, σ2)dσ1dσ2

[sin2((σ1 − s1)/2) + sin2((σ2 − s2)/2))]λ

⎞
⎠ ds1ds2

=
1

4π2

2π∫
0

2π∫
0

ψ(σ1,σ2)

⎛
⎝

2π∫
0

2π∫
0

ds1ds2

[sin2((σ1−s1)/2)+sin2((σ2−s2)/2))]λ

⎞
⎠dσ1dσ2

=
1

4π2

2π∫
0

2π∫
0

ds1ds2

[sin2(s1/2) + sin2(s2/2)]λ

2π∫
0

2π∫
0

ψ(s1, s2)ds1ds2.

(B.14)

From Lemma B.5 and Theorem B.3 one concludes that the following

inequality

Rn1n2(ψ; pk1k2 ;xk1 , xk2) ≥
γ

π2
n1n2

⎡
⎣q

h∫
0

ω1(t)dt+ h

q∫
0

ω2(t)dt

⎤
⎦ ,

h =
π

n1
, q =

π

n2

holds for arbitrary weights pk1k2 and nodes (xk1 , xk2) and

ζnn(Ψ) ≥ γ

π2
n1n2

⎡
⎣q

h∫
0

ω1(t)dt + h

q∫
0

ω2(t)dt

⎤
⎦ .

Theorem B.5 is proved. �

Theorem B.6 Let Ψ = Hα
i or Ψ = Zαi , i = 1, 2, 3, and calculate the

integral Kf by cubature formula (B.12). Then

ζN [Hα
i ] = 2ζN [Z

α
i ] = (1 + o(1))γ(4π2)2/αDiN

−α/2,

where D1 = 12
2+α (

1
2
√
3
)(α+2)/2

π/6∫
0

dϕ
cos2+α ϕ , D2 = 2

2α(2+α) , and D3 = 21−α/2

2+α .
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Proof. The proof of Theorem B.6 is similar to the proof of Theorem 5.1,

with some difference in the estimation of the integral
2π∫
0

2π∫
0

ψ(s1, s2)ds1ds2,

where the function ψ(s1, s2) belongs to the classHα
i (or Zαi ), is nonnegative

in the domain D = [0, 2π]2, and vanishes at N nodes Mk, k = 1, 2, . . . , N .

Using Lemma B.5 and Theorem B.4, one checks that the inequalities

inf
Mk

sup
ψ∈Hα

i ,ψ(Mk)=0

2π∫
0

2π∫
0

ψ(s1, s2)ds1ds2 = (1 + o(1))Di(4π
2)(2+α)/αN−α/2,

inf
Mk

sup
ψ∈Zα

i ,ψ(Mk)=0

2π∫
0

2π∫
0

ψ(s1, s2)ds1ds2 = (1 + o(1))
1

2
Di(4π

2)(2+α)/αN−α/2

hold for arbitrary Mk ∈ D, k = 1, 2, . . . , N .

Substituting these values into inequality (B.14), we complete the proof

of Theorem B.6. �

Theorem B.7 Let Ψ = C̃r2 (1), and calculate the integral Kf by formula

(B.11) with ρ1 = ρ2 = 0, and n1 = n2 = n. Then

ζnn[Ψ] ≥ (1 + o(1))
2γKr

nr
,

where Kr :=
4
π

∑∞
j=0(−1)j(r+1)(2j + 1)−r−1 is the Favard constant.

Proof. Let

ψ(s1, s2) = ψ1(s1) + ψ2(s2),

where 0 ≤ ψ1(s) ∈ W r(1) vanishes at the nodes xk, k = 1, 2, . . . , n, and

0 ≤ ψ2(s) ∈ W r(1) vanishes at the nodes yk, k = 1, 2, . . . , n.

According to [75], for arbitrary nodes xk, k = 1, 2, . . . , n one has:

2π∫
0

ψi(s)ds ≥ 2πKr

nr
, i = 1, 2.

Thus, the inequality

2π∫
0

2π∫
0

ψ(s1, s2)ds1ds2 ≥ 8π2Kr

nr

holds for arbitrary nodes (x1, . . . , xn) and (y1, . . . , yn).
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The conclusion of Theorem B.7 follows from this inequality and from

(B.14). �

Theorem B.8 Let Ψ = W r,r
p (1), r = 1, 2, . . ., 1 ≤ p ≤ ∞, and calculate

the integral Kf by formula (B.11) with ρ1 = ρ2 = r − 1 and n1 = n2 = n.

Then

ζnn[Ψ] ≥ (1 + o(1))
21/qπr−1/pRrq(1)

r!(rq + 1)1/q(n− 1 + [Rrq(1)]1/r)r
γ,

where Rrq(t) is a polynomial of degree r, least deviating from zero in

Lq([−1, 1]).

Proof. Let L = [ n
logn ]. Take an additional set of nodes (ξk, ξl), ξk = 2πk

L ,

k, l = 0, 1, . . . , L− 1. By (vi, wj), i, j = 0, 1, . . . , N − 1, N = n+ L, denote

the union of the sets (xk, yl) and (ξi, ξj). Let ψ(s1, s2) = ψ1(s1) + ψ2(s2),

where ψ1(s) ∈ W r
p (1) vanishes with its derivatives up to the order r − 1

at the nodes vi, i = 0, 1, . . . , N − 1, and ψ2(s) ∈ W
(r)
p (1) vanishes with

its derivatives up to order r − 1 at the nodes wj , j = 0, 1, . . . , N − 1.

Assume
vi+1∫
vi

ψ1(s)ds > 0, i = 0, 1, . . . , N − 1, and
wj+1∫
wj

ψ2(s)ds > 0, j =

0, 1, . . . , N − 1, where vN = 2π and wN = 2π.

Let

h(s1, s2, σ1, σ2) :=

{
0, if (σ1, σ2) = (s1, s2),

1
(sin2((σ1−s1)/2)+sin2((σ2−s2)/2))λ , otherwise,

ψ+(s1, s2) =

{
ψ(s1, s2), if ψ(s1, s2) ≥ 0,

0, if ψ(s1, s2) < 0,

ψ−(s1, s2) =
{

0, if ψ(s1, s2) ≥ 0,

−ψ(s1, s2), if ψ(s1, s2) < 0.

For each value (ξi, ξj), i, j = 0, 1, . . . , N − 1, we have (with N = N1 =

N2 = L):

2π∫
0

2π∫
0

h(ξi, ξj , σ1, σ2)ψ(σ1, σ2)dσ1dσ2

=

N−1∑
k=0

N−1∑
l=0

ξk+1∫
ξk

ξl+1∫
ξl

h(ξi, ξj , σ1, σ2)ψ(σ1, σ2)dσ1dσ2
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=

N−1∑
k=0

N−1∑
l=0

ξk+1∫
ξk

ξl+1∫
ξl

h(ξi, ξj , σ1, σ2)ψ
+(σ1, σ2)dσ1dσ2

−
N−1∑
k=0

N−1∑
l=0

ξk+1∫
ξk

ξl+1∫
ξl

h(ξi, ξj , σ1, σ2)ψ
−(σ1, σ2)dσ1dσ2

≥
i+[(N1−1)/2]∑

k=i+1

j+[(N2−1)/2]∑
l=j+1

h(ξi, ξj , ξk+1, ξl+1)

ξk+1∫
ξk

ξl+1∫
ξl

ψ+(σ1, σ2)dσ1dσ2

+

i+[(N1−1)/2]∑
k=i+1

j−1∑
l=j−[(N2−1)/2]

h(ξi, ξj , ξk+1, ξl−1)

ξk+1∫
ξk

ξl∫
ξl−1

ψ+(σ1, σ2)dσ1dσ2

+

i−1∑
k=i−[(N1−1)/2]

j+[(N2−1)/2]∑
l=j+1

h(ξi, ξj , ξk−1, ξl+1)

ξk∫
ξk−1

ξl+1∫
ξl

ψ+(σ1, σ2)dσ1dσ2

+

i−1∑
k=i−[(N1−1)/2]

j−1∑
l=j−[(N2−1)/2]

h(ξi, ξj , ξk−1, ξl−1)

ξk∫
ξk−1

ξl∫
ξl−1

ψ+(σ1, σ2)dσ1dσ2

−
i+[(N1−1)/2]∑

k=i+1

j+[(N2−1)/2]∑
l=j+1

h(ξi, ξj , ξk, ξl)

ξk+1∫
ξk

ξl+1∫
ξl

ψ−(σ1, σ2)dσ1dσ2

−
i+[(N1−1)/2]∑

k=i+1

j−1∑
l=j−[(N2−1)/2]

h(ξi, ξj , ξk, ξl)

ξk+1∫
ξk

ξl∫
ξl−1

ψ−(σ1, σ2)dσ1dσ2

−
i−1∑

k=i−[(N1−1)/2]

j+[(N2−1)/2]∑
l=j+1

h(ξi, ξj , ξk, ξl)

ξk∫
ξk−1

ξl+1∫
ξl

ψ−(σ1, σ2)dσ1dσ2

−
i−1∑

k=i−[(N1−1)/2]

j−1∑
l=j−[(N2−1)/2]

h(ξi, ξj , ξk, ξl)

ξk∫
ξk−1

ξl∫
ξl−1

ψ−(σ1, σ2)dσ1dσ2

=

i+[(N1−1)/2]∑
k=i+1

j+[(N2−1)/2]∑
l=j+1

h(ξi, ξj , ξk+1, ξl+1)

ξk+1∫
ξk

ξl+1∫
ξl

ψ(σ1, σ2)dσ1dσ2

+

i+[(N1−1)/2]∑
k=i+1

j−1∑
l=j−[(N2−1)/2]

h(ξi, ξj , ξk+1, ξl−1)

ξk+1∫
ξk

ξl∫
ξl−1

ψ(σ1, σ2)dσ1dσ2



Optimal Methods for Calculating Integrals of the Form (B.1) 297

+

i−1∑
k=i−[(N1−1)/2]

j+[(N2−1)/2]∑
l=j+1

h(ξi, ξj , ξk−1, ξl+1)

ξk∫
ξk−1

ξl+1∫
ξl

ψ(σ1, σ2)dσ1dσ2

+

i−1∑
k=i−[(N1−1)/2]

j−1∑
l=j−[(N2−1)/2]

h(ξi, ξj , ξk−1, ξl−1)

ξk∫
ξk−1

ξl∫
ξl−1

ψ(σ1, σ2)dσ1dσ2

−
i+[(N1−1)/2]∑

k=i+1

j+[(N2−1)/2]∑
l=j+1

(h(ξi, ξj , ξk, ξl)− h(ξi, ξj , ξk+1, ξl+1))

×
ξk+1∫
ξk

ξl+1∫
ξl

ψ−(σ1, σ2)dσ1dσ2

−
i+[(N1−1)/2]∑

k=i+1

j−1∑
l=j−[(N2−1)/2]

(h(ξi, ξj , ξk, ξl)− h(ξi, ξj , ξk+1, ξl−1))

×
ξk∫

ξk+1

ξl∫
ξl−1

ψ−(σ1, σ2)dσ1dσ2

−
i−1∑

k=i−[(N1−1)/2]

j+[(N2−1)/2]∑
l=j+1

(h(ξi, ξj , ξk, ξl)− h(ξi, ξj , ξk−1, ξl+1))

×
ξk∫

ξk−1

ξl+1∫
ξl

ψ−(σ1, σ2)dσ1dσ2

−
i−1∑

k=i−[(N1−1)/2]

l=j−1∑
l=j−[(N2−1)/2]

(h(ξi, ξj , ξk, ξl)− h(ξi, ξj , ξk−1, ξl−1))

×
ξk∫

ξk−1

ξl∫
ξl−1

ψ−(σ1, σ2)dσ1dσ2

= J1 + J2 + J3 + J4 + I1 + I2 + I3 + I4.

Let us estimate the integral
∣∣∣∣∣∣∣
ξk+1∫
ξk

ξl+1∫
ξl

ψ−(σ1, σ2)dσ1dσ2

∣∣∣∣∣∣∣
≤

ξk+1∫
ξk

ξl+1∫
ξl

|ψ−(σ1, σ2)|dσ1dσ2
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≤
ξk+1∫
ξk

ξl+1∫
ξl

|ψ(σ1, σ2)|dσ1dσ2 ≤ (ξl+1 − ξl)

×
ξk+1∫
ξk

|ψ1(σ)|dσ + (ξk+1 − ξk)

ξl+1∫
ξl

|ψ2(σ)|dσ

≤ 2

(
2π

L

)r+2
1

r!
,

where we have used the fact that the functions ψ1(s) and ψ2(s) on the

segments [ξk, ξk+1] and [ξl, ξl+1] vanish with derivatives up to order r − 1.

Now let us estimate the sum:

i+[(L−1)/2]∑
k=i+1

j+[(L−1)/2]∑
l=j+1

|h(ξi, ξj , ξk+1, ξl+1)− h(ξi, ξj , ξk, ξl)|

=

i+[(L−1)/2]∑
k=i+1

j+[(L−1)/2]∑
l=j+1

∣∣∣∣∣∣∣
1(

sin2 π(k+1−i)
L + sin2 π(l+1−j)

L

)λ

− 1(
sin2 2π(k−i)

L + sin2 2π(l−j)
L

)λ
∣∣∣∣∣∣∣

≤ c

L

i+[(L−1)/2]∑
k=i+1

j+[(L−1)/2]∑
l=j+1

1(
sin2 π(k−i)L + sin2 π(l−j)L

)1+λ
∣∣∣∣k − i

L
+
l − j

L

∣∣∣∣

≤ c

L

i+[(L−1)/2]∑
k=i+1

j+[(L−1)/2]∑
l=j+1

L2+2λ

((k − i)2 + (l − j)2)
1+λ

(k − i) + (l − j)

L

≤ c (L)
2λ

⎛
⎝[(L−1)/2]∑

l=1

1

l2λ
+

[(L−1)/2]∑
k=1

1

k2λ

⎞
⎠

≤ c (L)2λ

⎧⎨
⎩
L1−2λ if λ < 1

2 ,

logL if λ = 1
2 ,

1 if λ > 1
2 .



Optimal Methods for Calculating Integrals of the Form (B.1) 299

By c > 0 various estimation constants are denoted. Thus

I1 = o

(
1

nr

)
.

The expressions I2, I3, and I4 are esimated similarly.

From the definition of the function ψ(s1, s2) it follows that the error of

cubature formula (B.11) for s1 = ξi, s2 = ξj can be estimated as follows:

R(ψ, , ξi, ξj)

=

2π∫
0

2π∫
0

ψ(σ1, σ2)h(ξi, ξj , σ1, σ2)dσ1dσ2 ≥ o

(
1

nr

)

+

i+[(L−1)/2]∑
k=i+1

j+[(L−1)/2]∑
l=j+1

h(ξi, ξj , ξk+1, ξl+1)

ξk+1∫
ξk

ξl+1∫
ξl

ψ(σ1, σ2)dσ1dσ2

+

i+[(L−1)/2]∑
k=i+1

j−1∑
l=j−[(L−1)/2]

h(ξi, ξj , ξk+1, ξl−1)

ξk+1∫
ξk

ξl∫
ξl−1

ψ(σ1, σ2)dσ1dσ2

+

i−1∑
k=i−[(L−1)/2]

j+[(L−1)/2]∑
l=j+1

h(ξi, ξj , ξk−1, ξl+1)

ξk∫
ξk−1

ξl+1∫
ξl

ψ(σ1, σ2)dσ1dσ2

+

i−1∑
k=i−[(L−1)/2]

j−1∑
l=j−[(L−1)/2]

h(ξi, ξj , ξk−1, ξl−1)

ξk∫
ξk−1

ξl∫
ξl−1

ψ(σ1, σ2)dσ1dσ2.

Averaging the above inequality over i and j, one gets:

Rnn[Ψ] ≥ sup
ψ∈Ψ

max
i,j

Rnn(ψ, ξi, ξj) ≥ 1

L2

L−1∑
i=0

L−1∑
j=0

×

⎡
⎢⎣
i+[(L−1)/2]∑
k=i+1

j+[(L−1)/2]∑
l=j+1

h(ξi, ξj , ξk+1, ξl+1)

ξk+1∫
ξk

ξl+1∫
ξl

ψ(σ1, σ2)dσ1dσ2
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+

i+[(L−1)/2]∑
k=i+1

j−1∑
l=j−[(L−1)/2]

h(ξi, ξj , ξk+1, ξl−1)

ξk+1∫
ξk

ξl∫
ξl−1

ψ(σ1, σ2)dσ1dσ2

+
i−1∑

k=i−[(L−1)/2]

j+[(L−1)/2]∑
l=j+1

h(ξi, ξj , ξk−1, ξl+1)

ξk∫
ξk−1

ξl+1∫
ξl

ψ(σ1, σ2)dσ1dσ2

+
i−1∑

k=i−[(L−1)/2]

j−1∑
l=j−[(L−1)/2]

h(ξi, ξj , ξk−1, ξl−1)

ξk∫
ξk−1

ξl∫
ξl−1

ψ(σ1, σ2)dσ1dσ2

⎤
⎥⎦

+ o

(
1

nr

)
≥ o

(
1

nr

)
+

1

L2

×

⎡
⎢⎣
i+[(L−1)/2]∑
k=i+1

j+[(L−1)/2]∑
l=j+1

ξk+1∫
ξk

ξl+1∫
ξl

ψ(σ1, σ2)dσ1dσ2

×
L−1∑
i=0

L−1∑
j=0

h(ξi, ξj , ξk+1, ξl+1)

+

i+[(L−1)/2]∑
k=i+1

j−1∑
l=j−[(L−1)/2]

ξk+1∫
ξk

ξl∫
ξl−1

ψ(σ1, σ2)dσ1dσ2

×
L−1∑
i=0

L−1∑
j=0

h(ξi, ξj , ξk+1, ξl−1)

+

i−1∑
k=i−[(L−1)/2]

j+[(L−1)/2]∑
l=j+1

ξk∫
ξk−1

ξl+1∫
ξl

ψ(σ1, σ2)dσ1dσ2

×
L−1∑
i=0

L−1∑
j=0

h(ξi, ξj , ξk−1, ξl+1)

+

i−1∑
k=i−[(L−1)/2]

j−1∑
l=j−[(L−1)/2]

ξk∫
ξk−1

ξl∫
ξl−1

ψ(σ1, σ2)dσ1dσ2

×
L−1∑
i=0

L−1∑
j=0

h(ξi, ξj , ξk−1, ξl−1)

⎤
⎦
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= o(
1

nr
) +

1

4π2

2π∫
0

2π∫
0

ψ(σ1, σ2)dσ1dσ2

×
⎛
⎝

2π∫
0

2π∫
0

dσ1dσ2

(sin2(σ1/2) + sin2(σ2/2))λ
+O

((
logn

n

)2−2λ
)⎞
⎠ ,

where the following relation was used:

4π2

L2

L−1∑
i=0

L−1∑
j=0

h(ξi, ξj , ξk−1, ξl−1)

= O

(
logn

n

)
+

2π∫
0

2π∫
0

dσ1dσ2[
sin2(σ1/2) + sin2(σ2/2)

]λ .

Without loss of generality one may assume k = 1, l = 1 in the previous

equation. Let us estimate

U0 =

∣∣∣∣∣∣
4π2

L2

L−1∑
i=0

L−1∑
j=0

h(ξi, ξj , 0, 0)−
2π∫
0

2π∫
0

dσ1dσ2(
sin2(σ1/2) + sin2(σ2/2)

)λ
∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
L−1∑
i=0

L−1∑
j=0

′
ξi+1∫
ξi

ξj+1∫
ξj

[
1(

sin2((ξi)/2) + sin2((ξj)/2)
)λ

− 1(
sin2(σ1/2) + sin2(σ2/2)

)λ
]
dσ1dσ2

∣∣∣∣∣

+

∣∣∣∣∣∣
ξ1∫
0

ξ1∫
0

1(
sin2(σ1/2) + sin2(σ2/2)

)λ dσ1dσ2
∣∣∣∣∣∣ = u1 + u2,

where
∑∑ ′ means summation over (i, j) 
= (0, 0).
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Let us estimate u1 and u2. One has

u1 ≤

∣∣∣∣∣∣∣
L−1∑
i=0

L−1∑
j=0

′
ξi+1∫
ξi

ξj+1∫
ξj

[
1(

sin2((σ1)/2) + sin2((σ2)/2)
)λ

− 1(
sin2(ξi/2) + sin2(σ2/2)

)λ
]
dσ1dσ2

∣∣∣∣∣

+

∣∣∣∣∣∣∣
L−1∑
i=0

L−1∑
j=0

′
ξi+1∫
ξi

ξj+1∫
ξj

[
1(

sin2((ξi)/2) + sin2((σ2)/2)
)λ

− 1(
sin2(ξi/2) + sin2(ξj/2)

)λ
]
dσ1dσ2

∣∣∣∣∣
= u11 + u12.

The expressions u11 and u12 can be estimated similarly. Let us estimate

u11

u11 ≤ c

L4

L∑
i=0

L∑
j=0

′ 1(
sin2((ξi)/2) + sin2((ξj)/2)

)1+λ

≤ c

L2−2λ

L∑
i=0

L∑
j=0

′ 1

(i2 + j2)1+λ
≤ c

1

L2−2λ
,

where c > 0 stands for various estimation constants. Hence

u1 ≤ c

L2−2λ
.

Let us estimate u2 :

u2 =

∣∣∣∣∣∣
ξ1∫
0

ξ1∫
0

1(
sin2(σ1/2) + sin2(σ2/2)

)λ dσdσ2
∣∣∣∣∣∣

≤ c

ξ1∫
0

ξ1∫
0

1

(σ2
1 + σ2

2)
λ
dσ1dσ2.
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Using polar coordinates, one gets:

u2 ≤ c

1/L∫
0

2π∫
0

1

ρ2λ−1
dρdφ ≤ c

L2−2λ
.

Thus:

U0 ≤ c

L2−2λ
.

From Lemmas B.5, B.4, and Theorem B.2 it follows that

2π∫
0

ψ1(σ1)dσ1 ≥ (1 + o(1))(2π)r+1/qRrq(1)

2rr!(rq + 1)1/q(n− 1 + [Rrq(1)]1/r)r
, (B.15)

where Rrq(t) is a polynomial of degree r, least deviating from zero in

Lq([−1, 1]).

Theorem B.8 follows from inequalities (B.5.1) and (B.15). �

B.5.2 Optimal cubature formulas for calculating

integrals (B.1)

Hölder class of functions.

Let xk := 2kπ/n, k = 0, 1, . . . , n, Δkl = [xk, xk+1, xl, xl+1], k, l =

0, 1, . . . , n− 1, x′k = (xk+1 + xk)/2, k = 0, 1, . . . , n− 1, and (s1, s2) ∈ Δij ,

i, j = 0, 1, . . . , n− 1.

Calculate the integral Kf by the formula:

Kf =

n−1∑
k=0

n−1∑
l=0

f(x′k, x
′
l)

∫ ∫
Δkl

dσ1dσ2(
sin2

(
σ−x′

i

2

)
+ sin2

(
σ−x′

j

2

))λ +Rnn.

(B.16)

Theorem B.9 Let Ψ = Hαα(D), 0 < α < 1. Among all cubature formu-

las (B.11) with ρ1 = ρ2 = 0, formula (B.16), which has the error

Rnn[Ψ] =
(2 + o(1))γ

1 + α

(π
n

)α
,

is asymptotically optimal. Here γ is defined in (B.13).
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Proof. Using the periodicity of the integrand, we estimate the error of

cubature formula (B.16) as follows:

|Rnn|

≤
∣∣∣∣∣∣
n−1∑
k=0

n−1∑
l=0

∫ ∫
Δkl

[
f(σ1, σ2)− f(x′i, x

′
j)(

sin2 σ1−s1
2 + sin2 σ2−s2

2

)λ

− f(x′k, x
′
l)− f(x′i, x

′
j)

(
(
sin2

σ1−x′
i

2 + sin2
σ2−x′

j

2

)λ
⎤
⎥⎦ dσ1dσ2

∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣
n−1∑
k=0

n−1∑
l=0

∫ ∫
Δkl

f(σ1, σ2)− f(x′k, x
′
l)(

sin2 σ1−s1
2 + sin2 σ2−s2

2

)λ dσ1dσ2
∣∣∣∣∣∣

+

∣∣∣∣∣∣
n−1∑
k=0

n−1∑
l=0

∫ ∫
Δkl

(f(x′k, x
′
l)− f(x′i, x

′
j))

×

⎡
⎢⎣ 1(

sin2 σ1−s1
2 + sin2 σ2−s2

2

)λ − 1(
sin2

σ1−x′
i

2 + sin2
σ2−x′

j

2

)λ
⎤
⎥⎦

dσ1dσ2

∣∣∣∣∣
= r1 + r2.

Let us estimate each of the sums r1 and r2 separately. One has:

r1 ≤
∣∣∣∣∣∣
i+M∑

k=i−M

j+M∑
l=j−M

∫ ∫
Δkl

[
f(σ1, σ2)− f(x′k, x

′
l)(

sin2 σ1−s1
2 + sin2 σ2−s2

2

)λ dσ1dσ2
∣∣∣∣∣

+

∣∣∣∣∣∣
n−1∑
k=0

n−1∑
l=0

′
∫ ∫

Δkl

[
f(σ1, σ2)− f(x′k, x

′
l)(

sin2 σ1−s1
2 + sin2 σ2−s2

2

)λ dσ1dσ2
∣∣∣∣∣

= r11 + r12,

where
∑∑ ′ means summation over (k, l) such that

Δkl /∈ Δ∗, Δ∗ = [xi−M , xi+M+1;xj−M , xj+M+1],M = [lnn].



Optimal Methods for Calculating Integrals of the Form (B.1) 305

Furthermore

r11 ≤ c

nα

∫ ∫
Δ∗

dσ1dσ2(
sin2 σ1−s1

2 + sin2 σ2−s2
2

)λ

≤ c

nα

2πM/n∫
0

2π∫
0

dρdφ

ρ2λ−1
≤ c logn

nα+2−2λ
= o

(
1

nα

)
.

Estimating r12, one can assume without loss of generality (i, j) = (0, 0),

and get:

r12 ≤ 4

π/n∫
0

π/n∫
0

(ω1(σ1) + ω2(σ2))dσ1dσ2

n−1∑
k=0

n−1∑
l=0

hkl(s1, s2, σ1, σ2)

≤ 4

π/n∫
0

π/n∫
0

(σα1 + σα2 )dσ1dσ2

n−1∑
k=0

n−1∑
l=0

hkl(s1, s2, σ1, σ2)

≤ 8

1 + α

(π
n

)2+α n−1∑
k=0

n−1∑
l=0

hkl(s1, s2, σ1, σ2)

≤ 1 + o(1)

1 + α
2
(π
n

)α 2π∫
0

2π∫
0

dσ1dσ2(
sin2 σ1

2 + sin2 σ2

2

)λ .

Here

hkl(s1, s2;σ1, σ2) = sup
(σ1,σ2)∈Δkl

h(s1, s2;σ1, σ2).

Combining the estimates of r11 and r12, one gets:

r1 ≤ 1 + o(1)

1 + α
2
(π
n

)α
γ

Let us estimate r2. To this end we estimate the difference

r2(k, l) =

∫ ∫
Δkl

∣∣f(x′k, x′l)− f(x′i, x
′
j)
∣∣

×
∣∣∣∣∣
[

1(
sin2 σ1−s1

2 + sin2 σ2−s2
2

)λ

− 1(
sin2

σ1−x′
i

2 + sin2
σ2−x′

j

2

)λ
]
dσ1dσ2

∣∣∣∣∣.
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First, we estimate

r2(i, j) ≤ c

nα

∫ ∫
Δij

dσ1dσ2

×

∣∣∣∣∣∣∣
1(

sin2 σ1−s1
2 + sin2 σ2−s2

2

)λ − 1(
sin2

σ1−x′
i

2 + sin2
σ2−x′

j

2

)λ
∣∣∣∣∣∣∣

≤ c

n2+α−2λ
.

The value r2(k, l) is estimated similarly for |k − i| ≤ 3 and |l − j| ≤ 3.

Let us estimate r2(k, l) for other values of k and l.

One has:

r2(k, l) =

∫ ∫
Δkl

∣∣f(x′k, x′l)− f(x′i, x
′
j)
∣∣

×

∣∣∣∣∣∣∣
1(

sin2 σ1−s1
2 + sin2 σ2−s2

2

)λ − 1(
sin2

σ1−x′
i

2 + sin2
σ2−x′

j

2

)λ
∣∣∣∣∣∣∣

dσ1dσ2 ≤ c

n

∫ ∫
Δkl

[|x′k − x′i|α + |x′l − x′j |α
] [( |k − i|

n

)
+

( |l − j|
n

)]

×

∣∣∣∣∣∣∣
1(

sin2
σ1−x′

i+θ1(s1−x′
i)

2 + sin2 σ2−s2
2

)1+λ

+
1(

sin2
σ1−x′

i+θ1(s1−x′
i)

2 + sin2
σ2−x′

j+θ2(s2−x′
j)

2

)1+λ
∣∣∣∣∣∣∣

≤ c

n3

(∣∣∣∣ |k − i|
n

∣∣∣∣
α

+

∣∣∣∣ |l − j|
n

∣∣∣∣
α)(∣∣∣∣ |k − i|

n

∣∣∣∣+
∣∣∣∣ |l − j|

n

∣∣∣∣
)

×
(

n2

|k − i|2 + |l − j|2
)1+λ

≤ c

nα+2−2λ

(|k − i|+ |l− j|)1+α
(|k − i|2 + |l − j|2)1+λ

≤ c

nα+2−2λ

(|k − i|2 + |l − j|2)(1+α)/2
(|k − i|2 + |l − j|2)1+λ

≤ c

nα+2−2λ

1

(|k − i|2 + |l − j|2)1/2−α/2+λ
.
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To estimate r2, one sums up the last expression over k and l. Without

loss of generality assume (i, j) = (0, 0). Then

r2 ≤ c

nα+2−2λ

⎛
⎝16 + 4

[n/2]+1∑
k=0

[n/2]+1∑
l=0

′ 1

(k2 + l2)λ+1/2−α/2

⎞
⎠ ,

where
∑∑′

means summation over k and l such that k > 3 or l > 3.

One has:

[n/2]+1∑
k=0

[n/2]+1∑
l=0

′ 1

(k2 + l2)λ+1/2−α/2

≤ A

⎡
⎣[n/l]+1∑

k=3

1

k2λ+1−α +

[n/2]+1∑
k=3

[n/2]+1∑
l=3

1

(k2 + l2)λ+1/2−α/2

⎤
⎦

≤ A

⎧⎨
⎩

1, if 2λ− α > 1;

logn, if 2λ− α = 1;

n1−2λ+α, if 2λ− α < 1.

Hence

r2 ≤A
⎧⎨
⎩
n−(α+2−2λ), if 2λ− α > 1;

n−1 logn, if 2λ− α = 1;

n−1, if 2λ− α < 1.

Thus, if α < 1, then

r2 ≤ o(n−α).

Combining the estimates of r1 and r2, one gets:

Rnn[Ψ] ≤ γ
(2 + o(1))

1 + α

(π
n

)α
.

Theorem B.9 follows from the comparison of this inequality with the lower

bound of the value ζnn[Hα,α(D)], mentioned in the Corollary to Theorem

B.5. �

Remark B.2 If α = 1, the cubature formula (B.16) is optimal with

respect to order.
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The proof of Theorem B.9 yields also the following result

Theorem B.10 Let Ψ = Hαα(D), 0 < α ≤ 1. Among all possible cuba-

ture formulas (B.11) with ρ1 = ρ2 = 0, formula

Kf =

n−1∑
k=0

n−1∑
l=0

f(x′k, x
′
l)

∫ ∫
Δkl

dσ1dσ2(
sin2

(
σ−s1

2

)
+ sin2

(
σ−s2

2

))λ +Rnn,

which has the error

Rnn[Ψ] =
(2 + o(1))γ

1 + α

(π
n

)α
,

is asymptotically optimal.

To apply formula (B.16), one has to calculate the integrals

Ikl =

∫ ∫
Δkl

dσ1dσ2(
sin2

σ1−x′
i

2 + sin2
σ2−x′

j

2

)λ (B.17)

for k, l = 0, 1, . . . , n− 1. Exact values of these integrals for arbitrary values

λ are apparently unknown. Therefore the procedure of numerical calcula-

tion of integrals (B.17) should be given for practical application of formula

(B.16).

Let k = i and l = j. Then the integral Iij is replaced by the integral

pij
∗ =

π
n∫

−π
n

π
n∫

−π
n

dσ1dσ2(
sin2 σ1

2 + sin2 σ2

2

)λ
+ h

, h > 0,

which can be calculated by cubature formulas (in particular, Gauss

quadrature rule) with arbitrary degree of accuracy because the function
1

(sin2 σ1
2 +sin2 σ2

2 )λ+h
, has derivatives up to arbitrary order. The choice of

parameter h is discussed in Section 8.

Let k = i, l 
= j, and

Iil =
4π2

n2

(
sin2

x′l − x′j
2

)−λ
= p∗il.

Let k 
= i, l = j, and

Ikj =
4π2

n2

(
sin2

x′k − x′i
2

)−λ
= p∗kj .
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Let k 
= i, l 
= j, and

Ikl =
4π2

n2

(
sin2

x′k − x′i
2

+ sin2
x′l − x′j

2

)−λ
= p∗kl.

The integral Kf is calculated by the formula

Kf =

n−1∑
k=0

n−1∑
l=0

p∗klf(x
′
k, x

′
l) +Rnn(f, p

∗
kl, xk, y

′
l). (B.18)

Formula (B.18) is not optimal since it is not exact on constant functions

f(x, y) = const. But one can estimate the error of this formula:

|Rnn(f, p∗kl, x′k, y′l))| ≤M

n−1∑
k=0

n−1∑
l=0

|Ikl − p∗kl|+Rnn(Ψ),

where M = max |f(x, y)|.
The values |Ikl − p∗kl| are easily estimated, and one gets the conclusion

of Theorem B.10.

Classes of smooth functions

Theorem B.11 Assume ϕ ∈ W̃ r,r(1). Let Ψ = W̃ r,r(1), and calculate

the integral Kϕ by formula (B.11) with ρ1 = r − 1, ρ2 = r − 1, and n1 =

n2 = n. Then the cubature formula

Kϕ =

2π∫
0

2π∫
0

ϕmn(σ1, σ2)dσ1dσ2

(sin2(σ1 − s1)/2 + sin2(σ2 − s2)/2)λ
+Rmn(ϕ) (B.19)

is asymptotically optimal.

Before proving Theorem B.11, let us describe the construction of the

spline ϕmn. Let xk = 2kπ/n, k = 0, 1, . . . , n. Divide the sides of the

squares Ω = [0, 2π; 0, 2π] into n equal parts. Denote by Δkl the rectangle

Δkl = [2kπ/n, 2(k + 1)π/n; 2lπ/n, 2(l + 1)π/n], k, l = 0, 1, . . . , n − 1. Let

(s1, s2) ∈ Δij . First we approximate ϕ(σ1, σ2) as a function of σ2, and

construct a spline ϕn(σ1, σ2) by the following rule. Let σ1 be an arbitrary

fixed number, 0 ≤ σ1 ≤ 2π. On the segments [2kπ/n, 2(k + 1)π/n] for

k 
= j − 2, . . . , j + 1, one has:

ϕn(σ1, σ2) =
r−1∑
l=0

[
ϕ(0,l)(σ1, 2kπ/n)

l!
(σ2 − 2kπ/n)l +Blδ

(l)(σ1, (k + 1)/n)

]
,
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where

δ(σ1, σ2) := ϕ(σ1, σ2)−
r−1∑
l=0

ϕ(0,l)(σ1, 2kπ/n)

l!
(σ2 − 2kπ/n)l.

The coefficients Bl are defined by the equation

(2(k + 1)π/n− σ2)
r −

r−1∑
l=0

Blr!

(r − l − 1)!

2π

n
(2π(k + 1)/n− σ2)

r−l−1

= (−1)rRr1 (2π(2k + 1)/2n;π/n;σ2) ,

where Rr1(a, h, x) is a polynomial of degree r, least deviating from zero in

the norm of the space L on the segment [a − h, a + h]. On the segment

[2π(j − 2)/n, 2π(j + 2)/n] the function ϕn(σ1, σ2) is defined by the partial

sum of the Taylor series:

ϕn(σ1, σ2) = ϕ(σ1, 2πj/n) +
ϕ(0,1)(σ1, 2πj/n)

1!
(σ2 − j/n) + · · ·

+
ϕ(0,r−1)(σ1, 2πj/n)

(r − 1)!
(σ2 − 2πj/n)r−1.

We define the function ϕnn(σ1, σ2) by analogy with the function ϕn(σ1, σ2).

Proof of Theorem B.11. Let (s1, s2) ∈ Δij . The error of formula

(B.19) we estimate by the inequality

|Rnn| �
n−1∑
k=0

n−1∑′

l=0

∣∣∣∣∣∣∣
∫∫
Δkl

ϕ(σ1, σ2)− ϕnn(σ1, σ2)(
sin2 σ1−s1

2 + sin2 σ2−s2
2

)λ dσ1dσ2
∣∣∣∣∣∣∣

+

n−1∑
k=0

n−1∑′′

l=0

∣∣∣∣∣∣∣
∫

Δkl

ϕ(σ1, σ2)− ϕnn(σ1, σ2)(
sin2 σ1−s1

2 + sin2 σ2−s2
2

)λ dσ1dσ2
∣∣∣∣∣∣∣
= r1 + r2, (B.20)

where
∑′

k,l

means summation over (k, l) such that i − 1 � k � i + 1,

0 � l � n − 1 or 0 � k � n − 1, j − 1 � l � j + 1, and
∑′′

k,l

means

summation over the other values of (k, l).
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Let us estimate each of the sums r1 and r2 separately. In addition

without loss of generality assume that
∫∫
Δkl

(ϕ(σ1, σ2)−ϕnn(σ1, σ2))dσ1dσ2 �

0. Then

r1 �
n−1∑
k=0

n−1∑′

l=0

|ϕ(σ1, σ2)− ϕnn(σ1, σ2)|
∫∫
Δkl

dσ1dσ2(
sin2 σ1−s1

2 + sin2 σ2−s2
2

)λ

� A

{
n−(r+1), λ ≤ 1/2

n−(r+2−2λ), λ > 1/2;
(B.21)

r2 � 4

i+1+[(n−1)/2]∑
k=i+2

j+1+[(n−1)/2]∑
l=j+2

1(
sin2 xk−s1

2 + sin2 xl−s2
2

)λ

×
∫∫
Δkl

ψ(σ1, σ2)dσ1dσ2 − 4

i+1+[(n−1)/2]∑
k=i+2

j+1+[(n−1)/2]∑
l=j+2

×
[

1(
sin2 xk−s1

2 + sin2 xl−s2
2

)λ − 1(
sin2 xk+1−s1

2 + sin2 xl+1−s2
2

)λ
]

·
∫∫
Δkl

ψ−(σ1, σ2)dσ1dσ2 = r21 + r22, (B.22)

where ψ(σ1, σ2) = ϕ(σ1, σ2)− ϕnn(σ1, σ2),

ψ+(σ1, σ2) =

{
ψ(σ1, σ2), if ψ(σ1, σ2) � 0

0, if ψ(σ1, σ2) < 0;

ψ−(σ1, σ2) =

{
0, if ψ(σ1, σ2) � 0;

−ψ(σ1, σ2), if ψ(σ1, σ2) < 0.
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One has:

4

i+1+[(n−1)/2]∑
k=i+2

j+1+[(n−1)/2]∑
l=j+2

1(
sin2 xk−s1

2 + sin2 xl−s2
2

)λ

� 1 + o(1)

4π2

2π∫
0

2π∫
0

dσ1dσ2(
sin2 σ1

2 + sin2 σ2

2

)λ
(B.23)

Let us estimate the integral

i :=

∫∫
Δkl

ψ(σ1, σ2)dσ1dσ2 �

∣∣∣∣∣∣
∫∫
Δkl

(
ϕ(σ1, σ2)− ϕn(σ1, σ2)

)
dσ1dσ2

∣∣∣∣∣∣

+

∣∣∣∣∣∣
∫∫
Δkl

(
ϕn(σ1, σ2)− ϕnn(σ1, σ2)

)
dσ1dσ2

∣∣∣∣∣∣ = i1 + i2. (B.24)

Since the expressions i1 and i2 are estimated similarly, we estimate only

i1. One has

i1 � 2π

n
max
s1

∣∣∣∣∣∣
xl+1∫
xl

(
ϕ(s1, σ2)− ϕn(s1, σ2)

)
dσ2

∣∣∣∣∣∣ .

This integral is a continuous function of s1, which attains its maximum at

a point s∗, and

i1 � 2π

n

∣∣∣∣∣∣
xl+1∫
xl

(
ϕ(s∗, σ2)− ϕn(s

∗, σ2)
)
dσ2

∣∣∣∣∣∣
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� 2π

r!n

xl+1∫
xl

∣∣ϕ(0,r)(s∗, σ2)
∣∣
∣∣∣∣∣(xl+1 − σ2)

r

−
r−1∑
j=0

Blj(xl+1 − xl)r!

(r − 1− j)!
(xl+1 − σ2)

r−j−1

∣∣∣∣∣dσ2

� 2π

r!n

xl+1∫
xl

∣∣∣∣∣(xl+1 − σ2)
r −

r−1∑
j=0

Blj(xl+1 − xl)r!

(r − 1− j)!
(xl+1 − σ2)

r−j−1

∣∣∣∣∣dσ2

=
2π

r!n

xl+1∫
xl

∣∣Rr1(σ2)∣∣dσ2 � 4

(r + 1)!

(π
n

)r+2

Rr1(1).

(B.25)

From inequalities (B.24) and (B.25) one gets

i � 8

(r + 1)!

(π
n

)r+2

Rr1(1)

and

r21 � 2 + o(1)

(r + 1)!

(π
n

)r
Rr1(1)

2π∫
0

2π∫
0

dσ1dσ2(
sin2 σ1

2 + sin2 σ2

2

)λ . (B.26)

One has:

r22 = o(n−r). (B.27)

Estimate (B.27) follows from the inequalities:

∣∣∣∣∣∣
∫∫
Δkl

ψ−(σ1, σ2)dσ1dσ2

∣∣∣∣∣∣ �
∫∫
Δkl

∣∣ψ(σ1, σ2)∣∣dσ1dσ2 = O(n−r−2)

and

i+1+[(n−1)/2]∑
k=i+2

j+1+[(n−1)/2]∑
l=j+2

×
∣∣∣∣∣

1(
sin2 xk−s1

2 + sin2 xl−s2
2

)λ − 1(
sin2

xk+1−s1
2 + sin2

xl+1−s2
2

)λ
∣∣∣∣∣
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� An2λ
∑
k

∑
l

(k − i) + (l − j)(
(k − i)2 + (l − j)2

)λ+1
� c

⎧⎪⎪⎨
⎪⎪⎩
n, λ < 1/2

n logn, λ = 1/2

n2λ, λ > 1/2.

The estimate

Rnn(Ψ) ≤ (1 + o(1))
2πrRr1(1)

(r + 1)!(n− 1 + [Rr1(1)]1/r)r
γ

follows from inequalities (B.20), (B.21), (B.26), and (B.27).

Theorem B.9 follows from the comparison of the values ζnn[Ψ] and

Rnn[Ψ]. �

Let us construct cubature formulas for calculating integrals Kf on

classes of functions W rr(1). These formulas will be less accurate than

the ones in Theorem B.7, but they will be optimal with respect to order,

and easier to apply.

First, we investigate the smooth function

ψ(t1, t2) =

2π∫
0

2π∫
0

f(τ1, τ2)dτ1dτ2(
sin2 τ1−t12 + sin2 τ2−t22

)λ
assuming f(t1, t2) ∈ W̃ r,r. Changing the variables τ1 = τ1 − t, τ2 = τ2 − t,

in the last integral, one gets:

ψ(t1, t2) =

2π∫
0

2π∫
0

f(τ1 + t1, τ2 + t2)dτ1dτ2(
sin2 τ12 + sin2 τ22

)λ
Thus, ψ(t1, t2) ∈ W r,r.

Remark B.3 It is known (see, e.g., [6]) that Kolmogorov and Babenko

widths of the class of functionsW r,r(1) are δn(W
r,r(1)) � dn(W

r,r(1), C) �
1

nr/2 . Hence the recovery of the function ψ(t1, t2) using n functionals is not

possible with accuracy greater than O( 1
nr/2 ). More precise conclusions are

obtained in Theorems 5.3 and 5.4.

Thus, for recovery of a function ψ(t1, t2), (t1, t2) ∈ [0, 2π]2 with the

accuracy O(n−r/2), it is sufficient to calculate the value of the function

ψ(t1, t2) at the nodes (vk, vl), where vk = 2kπ/N , k, l = 0, 1, . . . , N , and

N2 = n, and to use the local spline ψN (t1, t2) of degree r with respect to

each variable.

Let us describe the construction of such spline.



Optimal Methods for Calculating Integrals of the Form Tf 315

Assume for simplicity that M := N/r is an integer, and cover the do-

main [0, 2π]2 with the squares Δkl = [wk, wl], k, l = 0, 1, . . . ,M − 1, here

wk = 2kπ/M , k = 0, . . . ,M . Approximate the function ψ(t1, t2) in each

domain Δkl by the interpolation polynomial ψN (t1, t2,Δkl) constructed on

the nodes (xki , x
l
j), i, j = 0, 1, . . . , r, xki = wk +

2π
Mr i, i = 0, 1, . . . , r.

Denote the local spline, which is defined by the polynomials

ψN (t1, t2,Δkl), by ψN (t1, t2).

If the values ψ(vk, vl) are calculated by formula (B.19) with the accuracy

O(n−r/2), then

‖ψ(t1, t2)− ψN (t1, t2)‖C ≤ O(n−r/2).

Therefore the spline ψN (t1, t2) is optimal with respect to order, and a

method for recovery of the function ψ(t1, t2), which has the error O(n−r/2)
(in the sup−norm) is constructed.

B.6 Optimal Methods for Calculating Integrals of the

Form Tf

B.6.1 Lower bounds for the functionals ζmn and ζN

First we get a lower bound for the error of formula (B.3) with ρ1 = ρ2 = 0

and n1 = n2 = n, on Hölder classes.

Theorem B.12 Let Ψ = Hαα(D), and calculate the integral Tf by for-

mula (B.3) with n1 = n2 = n and ρ1 = ρ2 = 0. Then the estimate

ζnn[Ψ] ≥ (1 + o(1))

22λ(1 + α)nα

1∫
−1

1∫
−1

dt1dt2
(τ21 + t21)

λ
(B.28)

holds.

Proof. Let n > 0 be an integer, L = [n/ logn]. Let vk := −1 + 2k/L,

k = 0, 1, . . . , L. By (ξk, ηl) we denote a set which is the union of nodes

(xi, yj), i, j = 1, 2, . . . , n of formula (B.3) and the nodes (vi, vj), i, j =

1, 2, . . . , L. Let Δkl = [vk, vk+1; vl, vl+1], k, l = 0, 1, . . . , L − 1. Let 0 ≤
ψ(t1, t2) ∈ Hαα(D), where D = [−1, 1]2, vanishing at the nodes (ξk, ηl),
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k, l = 0, 1, . . . , N , where N = n+ L. Consider the integral

(Tψ)(vi, vj)

=

1∫
−1

1∫
−1

ψ(τ1, τ2)dτ1dτ2
((τ1 − vi)2 + (τ2 − vj)2)λ

=

⎛
⎝L−1∑
k=i

L−1∑
l=j

+

L−1∑
k=i

j−1∑
l=0

+

i−1∑
k=0

L−1∑
l=j

+

i−1∑
k=0

j−1∑
l=0

⎞
⎠

×
∫ ∫

Δkl

ψ(τ1, τ2)dτ1dτ2
((τ1 − vi)2 + (τ2 − vj)2)λ

≥
L−i−1∑
k=0

L−j−1∑
l=0

(
L

2

)2λ
1

((k + 1)2 + (l + 1)2)λ

∫ ∫
Δk+i,l+j

ψ(τ1, τ2)dτ1dτ2

+

L−i−1∑
k=0

j−1∑
l=0

(
L

2

)2λ
1

((k + 1)2 + (l + 1)2)λ

∫ ∫
Δk+i,j−l−1

ψ(τ1, τ2)dτ1dτ2

+
i−1∑
k=0

L−j−1∑
l=0

(
L

2

)2λ
1

((k + 1)2 + (l + 1)2)λ

∫ ∫
Δi−k−1,j+l

ψ(τ1, τ2)dτ1dτ2

+

i−1∑
k=0

j−1∑
l=0

(
L

2

)2λ
1

((k + 1)2 + (l + 1)2)λ

∫ ∫
Δi−k−1,j−l−1

ψ(τ1, τ2)dτ1dτ2

=
L−1∑
k=0

L−1∑
l=0

(
L

2

)2λ
U(L−i−1−k)U(L−j−1−l)

((k + 1)2 + (l + 1)2)λ

∫ ∫
Δk+i,l+j

ψ(τ1, τ2)dτ1dτ2

+

L−1∑
k=0

L−1∑
l=0

(
L

2

)2λ
U(L−i−1−k)U(j−1−l)
((k + 1)2 + (l + 1)2)λ

∫ ∫
Δk+i,j−l−1

ψ(τ1, τ2)dτ1dτ2

+

L−1∑
k=0

L−1∑
l=0

(
L

2

)2λ
U(i−1−k)U(L−j−1−l)
((k + 1)2 + (l + 1)2)λ

∫ ∫
Δi−k−1,j+l

ψ(τ1, τ2)dτ1dτ2

+

L−1∑
k=0

L−1∑
l=0

(
L

2

)2λ
U(i− 1− k)U(j − 1− l)

((k + 1)2 + (l + 1)2)λ

∫ ∫
Δi−k−1,j−l−1

ψ(τ1, τ2)dτ1dτ2.

Here U(k) = 1 for k ≥ 0, and U(k) = 0 for k < 0.
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Averaging the above inequality over all i and j, i, j = 0, 1, . . . , L − 1,

one gets:

Rnn(Ψ, pkl;xk, yl)

≥ 1

L2

L−1∑
i=0

L−1∑
j=0

T (ψ)(ξi, ηj) ≥ 1

L2−2λ22λ

L−1∑
k=0

L−1∑
l=0

1

((k + 1)2 + (l + 1)2)λ

×
⎡
⎣L−1∑
i=0

L−1∑
j=0

U(L− i− 1− k)×U(L− j − 1− l)

∫ ∫
Δk+i,l+j

ψ(τ1, τ2)dτ1dτ2

+

L−1∑
i=0

L−1∑
j=0

U(L− i− 1− k)U(j − 1− l)

∫ ∫
Δk+i,j−l−1

ψ(τ1, τ2)dτ1dτ2

+
L−1∑
i=0

L−1∑
j=0

U(i− 1− k)U(L− j − 1− l)

∫ ∫
Δi−k−1,j+l

ψ(τ1, τ2)dτ1dτ2

+

L−1∑
i=0

L−1∑
j=0

U(i− 1− k)U(j − 1− l)

∫ ∫
Δi−k−1,j−l−1

ψ(τ1, τ2)dτ1dτ2

⎤
⎥⎦

≥ 1

L2−2λ22λ

L−1∑
k=0

L−1∑
l=0

1

((k + 1)2 + (l + 1)2)λ

×
⎡
⎣

1∫
vk

1∫
vl

ψ(τ1, τ2)dτ1dτ2 +

1∫
vk

vL−l−2∫
−1

ψ(τ1, τ2)dτ1dτ2

+

vL−k−2∫
−1

1∫
vl

ψ(τ1, τ2)dτ1dτ2 +

vL−k−2∫
−1

vL−l−2∫
−1

ψ(τ1, τ2)dτ1dτ2

⎤
⎦

≥ 1

L2−2λ22λ

L−1∑
k=0

L−1∑
l=0

1

((k + 1)2 + (l + 1)2)λ

1∫
−1

1∫
−1

ψ(τ1, τ2)dτ1dτ2.

(B.29)

From inequality (B.29) it follows that

ζnn[Hαα(D)] ≥ (1+ o(1))
1

L2−2λ22λ

L−1∑
k=1

L−1∑
l=1

1

(k2 + l2)λ

1∫
−1

1∫
−1

ψ(τ1, τ2)dτ1dτ2
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=
1 + o(1)

22λ4

1∫
−1

1∫
−1

dt1dt2
(t21 + t22)

λ

1∫
−1

1∫
−1

ψ(τ1, τ2)dτ1dτ2. (B.30)

From Theorem B.3 and Lemma B.5 it follows that the inequality

1∫
−1

1∫
−1

ψ(τ1, τ2)dτ1dτ2 ≥ 4

1 + α

1

nα
(B.31)

is valid for an arbitrary vector of the weights and the nodes (X,Y, P ) on

the class Hαα(D).

Theorem B.12 follows from inequalities (B.30) and (B.31). �

Theorem B.13 Let Ψ = Cr2 (1), and calculate the integral Tf by formula

(B.3) with ρ1 = ρ2 = 0. If n1 = n2 = n, then

ζnn[Ψ] ≥ (1 + o(1))
2Kr

22λ(πn)r

1∫
−1

1∫
−1

ds1ds2
(s21) + s22))

λ
,

where Kr is the Faward constant.

Proof. Let

ψ(s1, s2) = ψ1(s1) + ψ2(s2),

where 0 ≤ ψ1(s) ∈ W r(1), vanishes at the nodes xk, k = 1, 2, . . . , n, and

0 ≤ ψ2(s) ∈ W r(1) vanishes at the nodes yk, k = 1, 2, . . . , n.

For arbitrary nodes xk, k = 1, 2, . . . , n, one has (see [75]):

1∫
−1

ψi(s)ds ≥ 2Kr

(πn)r
, i = 1, 2.

Thus the inequality

1∫
−1

1∫
−1

ψ(s1, s2)ds1ds2 ≥ 8Kr

(πn)r

holds for arbitrary nodes (x1, . . . , xn) and (y1, . . . , yn).

Theorem B.13 follows from this estimate and inequality (B.30). �
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Theorem B.14 Let Ψ =W r,r
p (1), r = 1, 2, . . ., 1 ≤ p ≤ ∞, and calculate

the integral Tf by formula (B.3) with ρ1 = ρ2 = r − 1 and n1 = n2 = n.

Then the estimate

ζnn[Ψ] ≥ (1 + o(1))
21/qRrq(1)

22λr!(rq + 1)1/q(n− 1 + [Rrq(1)]1/r)r

1∫
−1

1∫
−1

ds1ds2
(s21 + s22)

λ

(B.32)

holds, where Rrq(t) is a polynomial of degree r, least deviating from zero in

Lq([−1, 1]).

Proof. Let L = [n/ logn]. Consider the nodes (vk, vl), vk = 2k
L , k, l =

0, 1, . . . , L − 1. By (ξi, ηj), i, j = 0, 1, . . . , N − 1, N = n + L denote the

union of the nodes (xk, yl) and (ξi, ξj). Let ψ(s1, s2) = ψ1(s1) + ψ2(s2),

where 0 ≤ ψ1(s) ∈ W r
p (1) vanishes with its derivatives up to order r − 1

at the nodes ξi, i = 0, 1, . . . , N − 1, and 0 ≤ ψ2(s) ∈ W r
p (1) vanishes

with its derivatives up to order r − 1 at the nodes ηj , j = 0, 1, . . . , N − 1.

Assume that
vi+1∫
vi

ψ1(s)ds > 0, i = 0, 1, . . . , N − 1, and
vj+1∫
vj

ψ2(s)ds > 0,

j = 0, 1, . . . , N − 1.

Using the argument similar to the one in the proof of Theorem B.12,

one gets

ζnn(Ψ, pkl; vk, vl) ≥ 1

L2

L−1∑
i=0

L−1∑
j=0

T (ψ)(vi, vj)

≥ 1

L2−2λ22λ

L−1∑
k=0

L−1∑
l=0

1

((k + 1)2 + (l + 1)2)λ

1∫
−1

1∫
−1

ψ(τ1, τ2)dτ1dτ2

=
1 + o(1)

22λ4

1∫
−1

1∫
−1

dt1dt2
(t21 + t22)

λ

1∫
−1

1∫
−1

ψ(τ1, τ2)dτ1dτ2.

(B.33)

From Theorem B.2 and Lemma B.5 it follows that the inequality

1∫
−1

1∫
−1

ψ(τ1, τ2)dτ1dτ2 ≥ (1 + o(1))
22+1/qRrq(1)

r!(rq + 1)1/q(n− 1 + [Rrq(1)]1/q)r

(B.34)

is valid for arbitrary weights and the nodes (X,Y, P ) on the class Hαα(D).

Theorem B.14 follows from inequalities (B.33)-(B.34). �
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B.6.2 Cubature formulas

Let us construct a cubature formula for calculating the integral Tf on the

Hölder class Hαα(D). Let xk := −1 + 2k/n, k = 0, 1, . . . , n, x′k = (xk+1 +

xk)/2, k = 0, 1, . . . , n−1, and Δkl = [xk, xk+1;xl, xl+1], k, l = 0, 1, . . . , n−1.

Calculate the integral Tf by the formula

Tf =

n−1∑
k=0

n−1∑
l=0

f(x′k, x
′
l)

∫ ∫
Δkl

dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

+Rnn(f). (B.35)

Consider another cubature formula for calculating the integral Tf .

Let (t1, t2) ∈ Δij . By Δ∗ denote the union of the square Δij and of

those squares Δkl which have common points with the Δij . Consider the

formula

Tf = f(x′i, x
′
j)

∫ ∫
Δ∗

dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

+

n−1∑
k=0

n−1∑
l=0

′f(x′k, x
′
l)

∫ ∫
Δkl

dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

+Rnn(f),

(B.36)

where
∑∑ ′ means summation over the squares which do not belong to

Δ∗.

Theorem B.15 Among all cubature formulas (B.3) with ρ1 = ρ2 = 0 and

n1 = n2 = n, formula (B.35), with the error estimate (B.42), is optimal

with respect to order.

Remark B.4 Similar statement holds for formula (B.36).

Proof of Theorem B.15. Let us estimate errors of formulas (B.35) and

(B.36).

The error of formula (B.35) can be estimated as follows:

|Rnn(f)| ≤
n−1∑
k=0

n−1∑
l=0

′
∫ ∫

Δkl

|f(τ1, τ2)− f(x′i, x
′
j)|

((τ1 − t1)2 + (τ2 − t2)2)λ
dτ1dτ2

+
n−1∑
k=0

n−1∑
l=0

′′
∫ ∫

Δkl

|f(τ1, τ2)− f(x′k, x
′
l)|

((τ1 − t1)2 + (τ2 − t2)2)λ
dτ1dτ2 = r1 + r2, (B.37)
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where
∑∑′

means summation over k and l such that the squares Δkl

belong to Δ∗, and
∑∑′′

means summation over the other squares.

Let us estimate r1 and r2:

r1 ≤ 2

nα

∫ ∫
Δ∗

dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

≤ c

n2−2λ+α
= o(n−α), (B.38)

r2 ≤ 4

1 + α

1

n2+α

n−1∑
k=0

n−1∑
l=0

′′h(Δkl). (B.39)

Here h(Δkl) denotes the maximum value of the function ((τ1 − t1)
2 +(τ2 −

t2)
2)−λ in the square Δkl.

One has:

∣∣∣∣∣∣
∫ ∫

Δkl

[
1

((τ1 − t1)2 + (τ2 − t2)2)λ
− h(Δkl)

]
dτ1dτ2

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ ∫

Δkl

[
1

((τ1−t1)2+(τ2 − t2)2)λ
− 1

((xk − t1)2 + (xl − t2)2)λ

]
dτ1dτ2

∣∣∣∣∣∣
≤
∫ ∫

Δkl

∣∣∣∣ 2λ(xk − t1 + q1(τ1 − xk))(τ1 − xk))

((xk − t1 + q1(τ1 − xk))2 + (τ2 − t2)2)λ+1
dτ1dτ2

∣∣∣∣

+

∫ ∫
Δkl

∣∣∣∣ 2λ(xl − t2 + q2(τ2 − xl))(τ2 − xl))

((xk − t1) + (xl − t2 + q2(τ2 − xl))2)λ
dτ1dτ2

∣∣∣∣

≤
∫ ∫

Δkl

2λ(τ1 − xk)

((xk − t1 + q(τ1 − xk))2 + (τ2 − t2)2)λ+1/2
dτ1dτ2

∣∣∣∣∣∣

+

∫ ∫
Δkl

2λ(τ2 − xl))

((τ1 − t1)2 + (xl − t2 + q2(τ2 − xl))2)λ+1/2
dτ1dτ2

∣∣∣∣∣∣
≤ 24λ

n3

n2λ+1

(k2 + l2)λ+1/2
=

24λ

n2−2λ

1

(k2 + l2)λ+1/2
,

where it was assumed that k ≥ i+1, and l ≥ j+1. Estimates for the other
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combinations of k and l are similar. Thus:

r2 ≤ 1

(1 + α)

1

nα

n−1∑
k=0

n−1∑
l=0

′′
∫ ∫

Δkl

dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

+
1

(1 + α)

23λ

n2−2λ+α

n−1∑
k=0

n−1∑
l=0

′′ 1

(k2 + l2)λ+1/2
.

(B.40)

Let us estimate the last term in the above inequality.

One has:

n−1∑
k=0

n−1∑
l=0

′′ 1

(k2 + l2)λ+1/2
≤

n/2∑
k=−[n/2]

n/2∑
l=−[n/2]

∗ 1

(k2 + l2)λ+1/2

≤ c

⎧⎨
⎩

1, λ > 1/2

logn, λ = 1/2

n1−2λ, λ < 1/2

(B.41)

where
∑∑∗

means summation over k and l, (k, l) 
= (0, 0).

In deriving (B.41) we have used the known result ([14], Theorem 56)

which says that a number of points with integer-value coordinates, situated

in the circle x2 + y2 = r2, is equal to πr2 + O(r).

From inequalities (B.40) and (B.41) it follows that

r2 ≤ (1 + o(1))

(1 + α)

1

nα

n−1∑
k=0

n−1∑
l=0

′′
∫ ∫

Δkl

dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

.

This and (B.38) yield

Rnn[Hαα(D)] ≤ 1 + o(1)

(1 + α)nα
sup

(t1,t2)∈D

1∫
−1

1∫
−1

dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

≤ 1 + o(1)

(1 + α)nα

1∫
−1

1∫
−1

dτ1dτ2
(τ21 + τ22 )

λ
.

(B.42)

Theorem B.15 follows from a comparison the estimates of ζ[Hα,α(D)]

and Rnn[Hα,α(D)]. �

Let us construct optimal with respect to order cubature formula for

calculating integrals Tf on the classes W rr. In the derivation of formula



Calculation of Weakly Singular Integrals on Non-Smooth Surfaces 323

(B.19) the local spline ϕn(t1, t2), approximating the function ϕ(t1, t2) in the

domain [0, 2π; 0, 2π], was constructed. A spline fnn(t1, t2), approximating

the function f(t1, t2) in the domain [−1, 1] × [−1, 1], can be constructed

analogously. Calculate the integral Tf by the formula

Tf =

1∫
−1

1∫
−1

fnn(τ1, τ2)dτ1dτ2
((τ1 − t1)2 + (τ2 − t2)2)λ

+Rnn(f). (B.43)

Theorem B.16 Let Ψ =W r,r(1), r = 1, 2, . . ., and calculate the integral

Tf by formula (B.3) with ρ1 = ρ2 = r−1, and n1 = n2 = n. Then cubature

formula (B.43), which has the error

Rnn(Ψ) ≤ (1 + o(1))
2Rr1(1)

(r + 1)!(n− 1 + [Rr1(1)]1/r)r

1∫
−1

1∫
−1

dτ1dτ2
(τ21 + τ22 )

λ
,

is optimal with respect to order. Here Rrq(t) is a polynomial of degree r,

least deviating from zero in Lq([−1, 1]).

As in the proof of the Theorem B.11 one gets the following estimate

Rnn(Ψ) ≤ (1 + o(1))
2Rr1(1)

(r + 1)!(n− 1 + [Rr1(1)]1/r)r

1∫
−1

1∫
−1

dτ1dτ2
(τ21 + τ22 )

λ
.

Comparing this estimate with the estimate of ζnn[W
r,r(1)] from Theo-

rem B.14 one finishes the proof.

B.7 Calculation of Weakly Singular Integrals on

Non-Smooth Surfaces

In Sections 5 and 6 asymptotically optimal methods for calculating weakly

singular integrals defined on the squares [0, 2π]2 or [−1, 1]2 were con-

structed.

It is of interest to study optimal methods for calculating weakly singular

integrals on piecewise-Lyapunov surfaces.

Consider the integral

Jf =

∫∫
G

f(τ1, τ2, τ3)dS(
(τ1 − t1)2 + (τ2 − t2)2 + (τ3 − t3)2

)λ , t1, t2, t3 ∈ G, (B.44)
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where G is a Lyapunov surface of class Ls(B,α).

We show that the results derived in Sections 5 and 6 can be partially

generalized to the integrals (B.44).

Calculate integrals (B.44) by the formula:

Jf =
n∑
k=1

ρ∑
|v|=0

pkvf
(v)(Mk) +Rn(f,G,Mk, pkv, t), (B.45)

where t = (t1, t2, t3), v = (v1, v2, v3), |v| = v1 + v2 + v3, f
(v)(t1, t2, t3) =

∂|v|f
∂t

v1
1 ∂t

v2
2 ∂t

v3
3

.

The error of formula (B.45) is:

Rn(f,G,Mk, pkv) = sup
t∈G

|Rn(f,G,Mk, pkv, t)|.

Assume f ∈ Ψ1, and G ∈ Ψ2. Then the error of formula (B.45) on the

classes Ψ1 and Ψ2 is:

Rn(Ψ1,Ψ2,Mk, Pkv) = sup
f∈Ψ1,G∈Ψ2

Rn(f,G,Mk, pkv).

Let

ζn[Ψ1,Ψ2] := inf
Mk,pkv

Rn(Ψ1,Ψ2,Mk, pkv).

A cubature formula with nodes M∗
k and weights p∗kv is called optimal,

asymptotically optimal, optimal with respect to order on the class of func-

tions Ψ1 and surfaces Ψ2, if

Rn(Ψ1,Ψ2,M
∗
k , p

∗
kv)

ζn[Ψ1,Ψ2]
= 1,∼ 1,� 1,

respectively.

Let Ψ1 = Hα(1), 0 < α � 1, and Ψ2 = L1(B, β) 0 < β � 1. Let us

construct an optimal with respect to order method for calculating integrals

(B.44) on the classes of functions Ψ1 and surfaces Ψ2. Let S(G) be a

“square” of the surface G. Divide the surface G into n parts gk, k =

1, 2, . . . , n, so that a “square” of each of the domains gk has the area of

order |S(G)|/n, where |S(G)| is the area of S(G). We take a point Mk in

each of domains gk at the center of the domain gk.
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Calculate integral (B.44) by the formula

Jf =
n∑
k=1

f(Mk)

∫∫
gk

dS(
(τ1 − t1)2 + (τ2 − t2)2 + (τ3 − t3)2

)λ +Rn(f,G).

(B.46)

Theorem B.17 Formula (B.46), has the error

Rn(Ψ1,Ψ2) � n−α/2,

and is optimal with respect to order on the classes Ψ1 = Hα, 0 < α � 1,

and Ψ2 = L1(B, β), 0 < β � 1, among all formulas (B.45) with ρ = 0.

Proof. Assume for simplicity that the surface G is given by the equation

z = ϕ(x, y), (x, y) ∈ G0, ϕ(x, y) � 0. Let ϕx(x, y) := p, ϕy(x, y) := q.

Write the integral Jf as

Jf =

∫∫
G0

f(τ1, τ2, ϕ(τ1, τ2))
√

1 + p2(τ1, τ2) + q2(τ1, τ2)dτ1dτ2[
(τ1 − t1)2 + (τ2 − t2)2 + (ϕ(τ1, τ2)− ϕ(t1, t2))2

]λ . (B.47)

The function f(τ1, τ2, ϕ(τ1, τ2)) belongs to the Hölder class Hα over G0,

and the function

√
1+p2+q2

[(τ1−t1)2+(τ2−t2)2+(ϕ(τ1,τ2)−ϕ(t1,t2))2]λ is positive.

Let Mk = (mk
1 ,m

k
2 ,m

k
3) be the nodes of cubature formula (B.45). Let

ψ(τ) := (d(τ, {Mk}))α, where d(τ, {Mk}) is the distance between the point

τ and the set of the nodes {Mk}, where the distance is measured along

the geodesics of the surface G. This distance satisfies the Hölder condition

Hα(1). Hence the function ψ∗(τ1, τ2) = ψ(τ1, τ2, ϕ(τ1, τ2)) belongs to the

Hölder class Hα(A) and vanishes at the nodes (mk
1 ,m

k
2), k = 1, 2, . . . , n.

Thus,

ζn(Ψ1,Ψ2) �
1

S(G0)

×
∫∫
G0

∫∫
G0

ψ(τ1, τ2, ϕ(τ1, τ2))
√
1 + p2 + q2dτ1dτ2dt1dt2[

(τ1 − t1)2 + (τ2 − t2)2 + (ϕ(τ1, τ2)− ϕ(t1, t2))2
]λ

� 1

S(G0)

∫∫
G0

ψ(τ1, τ2, φ(τ1, τ2))dτ1dτ2
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×min
t

∫∫
G0

√
1 + p2 + q2

[(τ1 − t1)2 + (τ2 − t2)2 + (ϕ(τ1, τ2)− ϕ(t1, t2))2]λ
dτ1dτ2

� A

nα/2
min
t

∫∫
G

ds

(r(t, τ))λ
,

where S(G0) is the “square” of the surface G0.

Therefore the error of formula (B.46) is estimated by the inequality

Rn � A
nα/2 .

Theorem B.17 is proved. �

Remark B.5 The method of decomposition of the domain G into smaller

parts gk, k = 1, 2, . . . , n, described below, is optimal with respect to order

for classes of functions Ψ1 = Hα, 0 < α � 1, and of surfaces Ψ2 =

L0(B, β), 0 < β � 1 for α � β.

Remark B.6 From formula (B.47) it follows that if the function

f ∈ W r,r(1) and the surface G ∈ Ls(B,α), then the function

f(τ1, τ2, ϕ(τ1, τ2)) ∈ W v,v(A), where v = min(r, s). Therefore, repeating

the above arguments, one proves that the accuracy of calculation of integral

(B.47) by cubature formulas using n values of integrand function does not

exceed O(n−v/2).

From this remark it follows that if the surface G consists of several

parts, for example of surfaces G1 and G2 having common edge L, then it is

necessary to calculate the integrals for the surface G1 and the surface G2

separately. If the surface G is divided into smaller parts gk, k = 1, 2, . . . , n,

the domains gk, the curve L passes inside of these domains, should be as-

sociated with the class of surfaces L0(B, 1). In these domains the accuracy

of calculation of the integral does not exceed than O(n−1
k ), where nk is the

number of nodes of the cubature formula used in the domain gk.

For this reason the cusps and the nodes, in which three or more domains

Gk, which are parts of the domain G touch each other, must belong to the

boundaries of the covering domains gk, k = 1, 2, . . . , n.

The universal code for computing capacitances, described in Section B.9,

is based on optimal with respect to order cubature formulas for calculating

integrals on the classes of functions Hα, 0 < α � 1, on surfaces of the class

L0(B, β), B = const, α � β, β � 1.

The algorithm constructed in Section B.9 is optimal on this class of

surfaces and does not require special treatment of edges and conical points

of the surface.
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When one studies cubature formulas on the classesW r,r(A), r > 1, and

Ls(B, β), s � 1, 0 � β � 1, one has to develop a method to compute

accurately the integrals in a neighborhood of the above singular points of

the surface.

B.8 Calculation of Weights of Cubature Formulas

In calculating weakly singular integrals by cubature formulas (B.35) it is

necessary to calculate integrals of the form of

Jkl(t1, t2) =

∫
Δkl

dτ1dτ2

((τ1 − t1)2 + (τ2 − t2)2)
λ

for different values (t1, t2) ∈ [−1, 1]2.

Let (t1, t2) ∈ Δij . Let us consider two possibilities:

(1) the square Δkl and the square Δij have nonempty intersection;

(2) the square Δkl is does not have common points with the square Δij .

First consider the second case, when the function

ϕ(τ1, τ2) =
1

((τ1 − t1)2 + (τ2 − t2)2)
λ
,

is smooth. Here (τ1, τ2) ∈ Δkl, and (t1, t2) ∈ Δij .

In this case one has∣∣∣∣∂
rϕ(τ1, τ2)

∂τr1

∣∣∣∣ ≤ r!22r

((τ1 − t1)2 + (τ2 − t2)2)
λ+r/2

and, if the squares Δkl and Δij do not have common points, one gets

∣∣∣∣∂
rϕ(τ1, τ2)

∂τr1

∣∣∣∣ ≤ 2rr!n2λ+r

2λ
.

Similar estimates holds for partial derivative with respect to τ2.

Calculate the integral Jkl(t1, t2) by the Gauss cubature formula

Jkl(t1, t2) =

∫
Δkl

Pmm

[
1

((τ1 − t1)2 + (τ2 − t2)2)
λ

]
dτ1dτ2 +Rmm(Δkl),

where Pmm = P τ1m P τ2m , P τim (i = 1, 2) is the projection operator onto the

set of interpolation polynomials of degree m with nodes at the zeros of the
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Legendre polynomial, which maps the segment [−1, 1] onto the segment

[xk, xk+1] for i = 1, and onto the segment [xl, xl+1] for i = 2.

An integer m is chosen so that |Rmm| ≤ n−2−α for cubature formulas

on the Hölder class Hαα, and |Rmm| ≤ n−r−α for cubature formulas on the

class W rr.

This requirement is made because the error of calculation of the coeffi-

cients Jkl(t1, t2) must not exceed the error of formula (B.32).

Using r derivatives of the integrand in the error Rmm(Δkl), one gets:

|Rmm(Δkl)| ≤ Br2
rr!

mr−1

(
2

n

)2−2λ

,

where Br is the constant appearing in Jackson’s theorems. It is known

that the constants Br are bounded by a constant, denoted b, uniformly

with respect to r. In the case of periodic functions b = 1 ([51]), and in the

general case b is apparently unknown.

If r = 2 and m = Br2
rr!n2λ, then one gets the error estimate given for

cubature formula (B.32).

Now, consider a method for calculating the integrals Jkl(t1, t2) when the

square Δkl has nonempty intersection with the square Δij . For definiteness

we consider the calculation of the integral Jij(t1, t2) by the formula:

Jij(t1, t2) =

∫
Δij

Pmm

[
1

((τ1 − t1)2 + (τ2 − t2)2)
λ
+ h

]
dτ1dτ2 +Rmm(Δij),

where h = const > 0 will be specified below.

One has:

|Rmm(Δij)| ≤ h

∫
Δij

dτ1dτ2
((τ1 − t1)2+(τ2−t2)2)λ(((τ1−t1)2+(τ2−t2)2)λ + h)

+

∫
Δij

Dmm

[
1

((τ1 − t1)2 + (τ2 − t2)2)
λ + h

]
dτ1dτ2 = r1 + r2,

where Dmm = I − Pmm, and I is an identity operator, and

r1 ≤h
∫

Δij

dτ1dτ2
((τ1−t1)2+(τ2−t2)2)(λ+1)/2(((τ1−t1)2+(τ2−t2)2)λ+h)(1+λ)/2

≤ 2π

1− λ
h(1−λ)/2

(
2π

n

)1−2λ

. (B.48)
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The function 1
((τ1−t1)2+(τ2−t2)2)λ+h is infinitely smooth. Using bounds

for its first derivatives for λ ≥ 1/2, one gets:

r2 ≤ 8λB1

n4h2m
. (B.49)

From inequality (B.48) it follows that for getting accuracy O(n−1−α)
one has to have h = n−2(2λ+α)/(1−λ) and from inequality (B.49) it follows

that one has to have m = max([n(8λ+4α)/(1−λ)+α−3], 1).

B.9 Iterative Methods for Calculating Electrical

Capacitancies of Conductors of Arbitrary Shapes

Numerical methods for solving electrostatic problems, in particular, cal-

culating capacitancies of conductors of arbitrary shapes, are of practical

interest in many applications. There exists a vast literature on calculation

of the capacitances of perfect conductors. In [43] there is a reference sec-

tion which gives the capacitance of the conductors of certain shapes (more

than 800 shapes are considered in [43]). In Chapter 3 iterative methods for

solving interior and exterior boundary value problems in electrostatics are

proposed and mathematically justified. Upper and lower estimates for some

functionals of electrostatic fields are obtained in Chapter 3 as well. Such

functionals are the capacitances of perfect conductors and the polarizability

tensors of bodies of arbitrary shape. These bodies are described by their

dielectric permittivity, magnetic permeability and conductivity. They can

be homogeneous or flaky. The main point is: these bodies have arbitrary

geometrical shapes.

The methods, developed in Chapter 3, yield analytical formulas for cal-

culation of the capacitances and polarizability tensors of bodies of arbitrary

shapes with any given accuracy. Error estimates for these formulas are ob-

tained in Chapter 3. Recall the formulas for calculating the capacitances

of the conductors of arbitrary shapes (see Chapter 3):

C(n)= 4πε0S
2

⎧⎪⎪⎨
⎪⎪⎩

(−1)n

(2π)n

∫
Γ

∫
Γ

ds dt

rst

∫
Γ

· · ·
∫
Γ︸ ︷︷ ︸

n times

ψ(t, t1)· · ·ψ(tn−1, tn)dt1· · ·dtn

⎫⎪⎪⎬
⎪⎪⎭

−1

,

where S is the surface area of the surface Γ of the conductor, ε0 is the
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dielectric constant of the medium, rst := |s− t|, and ψ(t, s) := ∂
∂Nt

1
rst

,

C(0) =
4πε0S

2

J
≤ C, J ≡

∫
Γ

∫
Γ

ds dt

rst
, S = meas Γ.

It is proved in Chapter 3 that∣∣∣C − C(n)
∣∣∣ ≤ Aqn, 0 < q < 1,

where A and q are constants which depend only on the geometry of Γ.

We use these formulas are used to construct the computer code for

calculating the capacitances of the conductors of arbitrary shapes.

It is proved in Chapter 3 that

C(n) = 4πε0S
2

⎛
⎝∫

Γ

∫
Γ

r−1
st σn(t)dtds

⎞
⎠

−1

, (B.50)

where σn is defined by the iterative process:

σn+1 = −Aσn, σ0 = 1,

∫
Γ

σndt = S, (B.51)

and A is defined by the formula:

Aσ :=

∫
Γ

σ(t)
∂

∂Ns

1

2πrst
dt,

where Ns is the outer unit normal to Γ at the point s.

To use iterative process (B.51), one has to calculate the weakly singular

integral

1

2π

∫
Γ

σ(t)
∂

∂Ns

1

rst
dt. (B.52)

Let us describe the construction of a cubature formula for calculating in-

tegral (B.52), assuming for simplicity that the domain G, bounded by the

surface Γ, is convex. This asumption can be removed.

Let S be the inscribed in the conductor sphere of maximal radius r∗,
centered at the origin. Introduce the spherical coordinates system (r, φ, θ),

and the set of the nodes (r∗, φk, θl), where φk = 2kπ/n, k = 0, 1, . . . , n, θl =

πl/m, l = 0, 1, . . . ,m. Assume that m is even, and cover the sphere S with

the spherical triangles Δk, k = 1, 2, . . . , N, N = 2n(m− 1).
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Let us describe the construction of the spherical triangles. For 0 ≤ Θ ≤
π/m the triangles Δk, k = 1, 2, . . . , n have vertices (r∗, 0, 0), (r∗, φk−1, θ1),

(r∗, φk, θ1), k = 1, 2, . . . , n.

For θl ≤ θ ≤ θl+1, l = 1, 2, . . . ,m/2−1, the triangles Δk, k = n+2n(l−
1)+j, 1 ≤ j ≤ 2n are constructed as follows. The rectangle [0, 2π; θl, θl+1] is

covered with the squares Δkl = [φk, φk+1; θl, θl+1], k = 0, 1, . . . , n−1. Each

of the squares Δkl is divided into two equal triangles Δ1
kl and Δ2

kl, k =

0, 1, . . . , n − 1, l = 1, 2, . . . ,m/2 − 1. The spherical triangles Δ1
kl and

Δ2
kl, k = 0, 1, . . . , n− 1, l = 1, 2, . . . ,m/2− 1, are images of triangles Δ1

kl

and Δ2
kl on the sphere S

As a result of these constructions the sphere S is covered with triangles

Δk, k = 1, 2, . . . , N .

We draw the straight lines through the origin and vertices of the triangle

Δk, k = 1, 2, . . . , N . The points of intersection of these lines with the sur-

face Γ are vertices of the triangle Δk, k = 1, 2, . . . , N . As a result of these

constructions the surface Γ is approximated by the surface ΓN consisting

of triangle Δk, k = 1, 2, . . . , N , and integral (B.52) is approximated by the

integral

U(s) =
1

2π

∫
ΓN

σ(t)
∂

∂Ns

1

rst
dt. (B.53)

We fix each triangle Δk, k = 1, 2, . . . , N , and associate with it a point

τk ∈ Δk, k = 1, 2, . . . , N , equidistant from the vertices of the triangle

Δk, k = 1, 2, . . . , N . We calculate integral (B.53) at the points τk, k =

1, 2, . . . , N , by the cubature formulas constructed in paragraphs 5-7 for the

Hölder classes. After calculating the values U(τk), k = 1, 2, . . . , N by these

cubature formulas, the integral

C̃(1) = −4πε0S
2
N

⎛
⎝∫
ΓN

∫
ΓN

r−1
st Ũ(t)dtds

⎞
⎠

−1

is calculated, where Ũ(t) = U(τk) for t ∈ Δk, k = 1, 2, . . . , N , SN is area of

the surface ΓN , C̃
(1) is approximation to the value of C(1). The successive

iterations are calculated analogously.
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B.10 Numerical Examples

In this section the numerical results are given. As an example we calculated

the capacitances of various ellipsoids, because for ellipsoids one knows the

analytical formula for the capacitance, which makes it possible to evaluate

the accuracy of the numerical results. Consider the ellipsoid:

x2

a2
+
y2

b2
+
z2

c2
= 1.

It is known [43] that the exact value of the capacitance of ellipsoid with

a = b is:

C =
4πε0

√
a2 − c2

arccos(c/a)
.

Let a = b = 1, and ε0 = 1. We have calculate the capacitance C for

different values of the semiaxis c. The results of the calculations are given

in Table B.10.

It is known (see Chapter 3), that the capacitance of a metallic disc of

radius a is C = 8aε0, and one can see from Table 1, that asymptotically, as

c→ 0, this formula can be used practically for the ellipsoids with c ≤ 0.001

with the error approximately equal to 0.005.
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C n m N Exact value Error Relative error Calculation time

0.9 40 30 2320 12.144630 −0.221200 0.018212 25 sec

0.5 40 30 2320 10.392304 −0.222042 0.021366 25 sec

0.1 40 30 2320 8.5020638 −0.301189 0.035425 25 sec

0.01 40 30 2320 8.050854 0.072132 0.008959 25 sec

0.001 40 30 2320 8.005092 −0.821528 0.106374 25 sec

0.0001 40 30 2320 8.000509 −1.068178 0.133513 25 sec

0.9 50 40 3900 12.144630 −0.180510 0.014801 1min 15 sec

0.5 50 40 3900 10.392304 −0.185642 0.017860 1min 15 sec

0.1 50 40 3900 8.5020638 −0.288628 0.033947 1min 15 sec

0.01 50 40 3900 8.050854 −0.372047 0.046212 1min 15 sec

0.001 50 40 3900 8.005092 −0.586733 0.073295 1min 15 sec

0.0001 50 40 3900 8.000509 −0.933288 0.116653 1min 15 sec

0.9 60 50 5880 12.144630 −0.152009 0.012516 4min

0.5 60 50 5880 10.392304 −0.160023 0.015391 4min

0.1 60 50 5880 8.5020638 −0.283364 0.033328 4min

0.01 60 50 5880 8.050854 0.532250 0.061110 4min

0.001 60 50 5880 8.005092 −0.391755 0.048939 4min

0.0001 60 50 5880 8.000509 −0.880394 0.110042 4min
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Problems

1. Write a computer program for calculating the capacitance and the

polarizability tensors for a body of arbitrary shape. According to formulas

(5.8)–(5.13) the program is to calculate multiple integrals over the surface

of the body. The integrands are functions with weak singularities, e.g.,∫
Γ

∫
Γ

r−1
st ds dt,

∫
Γ

∫
Γ

r−1
st Ni(s)Nj(s)ds dt,

∫
Γ

∫
Γ

r−1
st

(∫
Γ

∂r−1
tt1

∂Nt
dt1

)
ds dt,

where rst := |s− t| is the Euclidean distance between points s and t, amd

Nj(s) is the j−th component of the exterior uni normal to the surface Γ at

the point s.

Finding good algorithms for calculating multiple integrals of functions

with moving weak singularities is a problem of general interest. This prob-

lem is discussed in the Appendix, but it is of great interest to develop

efficient computer codes for calculationg such integrals.

2. Carry out a numerical study of the dependence of the scattering

amplitude on: (1) the shape of the body, (2) on the boundary conditions,

(3) on the coating of the body (e.g., a flaky-homogeneous body with two

layers of which the exterior layer is thin).

3. Carry out a numerical study of the many-body problem using for-

mulas (7.59), (7.63), (7.67), (7.71), (7.72), (7.75), (7.79), and (7.80).
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4. Study the inverse problem of finding the properties of the medium

consisting of many small particles from the scattering data.

5. Develop a theory of elastic wave scattering by small bodies of

arbitrary shape similar to the theory of acoustic and electromagnetic wave

scattering given in Chapter 7.



Bibliographical Notes

Some of the results mentioned in the introduction are presented in the books
[13], [15], [43], [58], [60], [68], [71], [74], [73]. Variational principles and two-

sided estimates of various functionals of static fields are given in [79], [76].

Low-frequency scattering, first studied by Rayleigh (1871), is studied in
[147], [151], [58], [40], [49], [50], [42], [39]. Scattering from small holes is

studied in [9], [61], [25]. Potential theory for domains with smooth bound-

aries is given in [38]. The theory for domains with non-smooth boundaries is

presented in [15], [52], and for Lipschitz domains in [22], [23], [70], [157], and

in many other references. Boundary-value problems and scattering prob-

lems in domains with rough boundaries, much rougher than the Lipschitz

ones, were studied in [107], [104], [31], see also [144], where the domains

are of finite perimeter. In [65], [30] and [31] the embedding theorems for

rough domains are given.

Reference material and an extensive bibliography on electrical capaci-

tance can be found in [43]. There is an extensive literature on scattering

by a system of many bodies and wave propagation in random media, topics

outside of the scope of this book. Among many contributors to this field

are [27], [59]. The effective field in random media and in media consisting

of small particles has been studied in [162], [163], [26], [41], [152], [64], [159],
[146], [113], to name only a few references.

In [69] there is a discussion of wave scattering by small non-spherical

particles with many applications. The formulas for the scattering matrix

for acoustic and electromagnetic wave scattering by particles of arbitrary

shapes, derived in [113] apparently are not familiar to the authors of [69].

In many applications these formulas are important.

Integral equations of the first kind were used in electrostatics [155].

In [24] an integral equation of the second kind was derived for screens
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(non-closed surfaces). A numerical approach to problem (6.103), different

from the one given in Section 6.3, was given in [161]. In [18] the possibil-

ity of calculating the cardiac electric potential of a human body from the

potential, measured on the surface of the body, is discussed. A computer

program for calculating the elements of the polarizability tensor of rota-

tionally symmetric metallic bodies was given in [150]. In [4] some methods

for finding small subsurface inhomogeneities from the measurements on the

surface are discussed.

The main results presented in this book were obtained by the author in
[113], [133], [107], in the author’s papers and joint papers mentioned in the

bibliography and in the book.

These results include:

(1) approximate analytical formulas for polarizability tensors and capac-

itances for bodies of arbitrary shapes,

(2) two-sided estimates of the polarizability tensors,

(3) approximate analytical formulas for the scattering amplitude and scat-

tering matrix in the problem of wave scattering by a small body of an

arbitrary shape and by a system of such bodies,

(4) investigation of the influence of the boundary conditions on the scat-

tering amplitude,

(5) methods for a study of obstacle scattering problems in rough domains,

(6) methods for obtaining low-frequency asymptotics of the solutions to

boundary-value problems,

(7) methods for finding small subsurface inhomogeneities from the scat-

tering data measured on the surface or in the far-field region,

(8) MRC (Modified Rayleigh Conjecture) method for solving obstacle

scattering problems and static problems,

(9) optimal methods for calculating multidimensional integrals with weak

singularities,

(10) construction of convergent iterative schemes for solving integral equa-

tions for interior and exterior boundary-value problems,

(11) equations for the self-consistent field in a medium consisting of many

small particles.
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28. A.M.S. Meeting, Bloomington, Indiana, April 1980

29. International symposium on nonlinear phenomena, Arlington, Texas,

June 1980

30. Symposium on real analysis, Mich. State University, June 1980

31. Symposium on scattering theory, Oberwolfach, FRG, August 1980

32. A.M.S. 1980 summer meeting, August 1980 Ann Arbor, MI

33. Conference on integral equations, Oberwolfach, FRG, Dec. 1980

34. Mathematical foundations of the singularity and eigenmode expansion

methods, Meeting at the University of Kentucky, Lexington, KY, Nov.

1980

35. International conference on spectral theory of differential operators,

Birmingham, Alabama, March 26–28, 1981

36. IEEE International symposium on circuits and systems, Chicago, IL,

April 27–29, 1981

37. A.M.S. Annual meeting, January 1981

38. 7th International Dundee conference on ordinary and partial differen-

tial equations, 3-29-82 to 4-3-82
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39. IEEE International symposium on information theory, Les Arcs.

France, 6-21-25-1982

40. IEEE International symposium on antennas and propagation, Univ.

of New Mexico, Albuquerque, May 1982.

41. AMS annual meeting, Denver, Jan. 1983, Monotone operators and

nonlinear passive systems (special session, invited talk)

42. 1983 International symposium on the mathematical theory of net-

works and systems, June 20–24, 1983, Ben Gurion Univ., Beer Sheva,

Israel

43. 1983 International IEEE symposium CAS, Newport Beach, California,

May 2–4, 1983

44. Conference on scattering theory, Oberwolfach, July 1983, FRG

45. NATO advanced research workshop on inverse scattering, Bad-

Windsheim, FRG, Sept. 1983

46. AMS annual meeting, January 1984, special session PDE

47. International conference on P. D. E., Dundee, June 1984

48. Conference on PDE, Oberwolfach, March, 1985

49. 11th world IMACS congress, Oslo, August 1985, plenary talk

50. Finnish mathematical society meeting, May, 1985

51. Conference of the Chinese mathematicians, Taiwan, July 1986, ple-

nary talk

52. International conference on operator theory, Oct. 1986

53. Conference on inverse problems, Montpellier, Dec. 1986

54. International conference on mathematical geophysics, West Berlin,

Feb. 1987

55. AMS meetings March, April 1987

56. European Congress on Simulation, ECS-87, Sep. 1987, Plenary talk

57. Conference on numerical integration, Nov. 1987, Oberwolfach

58. AMS annual meeting, January 1988

59. Annual GAMM meeting, Vienna, April 1988, plenary talk

60. Workshop on inverse problems, Univ. of MD, March 1988

61. The first Woodward conference on Wave phenomena, June 1988, ple-

nary talk

62. International conference on inverse problems, Montpellier, France,

Dec. 1988 (2 one-hour lectures)

63. NSF conference on nonlinear wave equations Jan. 1989

64. Oberwolfach conference on differential equations (March 1989)

65. NSF workshop on inverse problems (July 29-August 4, 1989)
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66. International conference on inverse problems (Bulgaria, Sep. 1989)

67. Oberwolfach conference on solitons, Jan. 1990

68. NSF conference on inverse scattering, June 1990

69. SIAM annual meeting, July 1990, minisymposium on inverse scatter-

ing.

70. International conference “Inverse problems in science and engineer-

ing”, Osaka, Aug. 1990

71. International Congress of Mathematicians, Kyoto, August, 1990

72. Oberwolfach conference on statistical estimation, Nov. 1990

73. South Eastern conference on differential equations, Blacksburg, VA,

Nov. 1990

74. International conference on mathematical modeling, key-note speaker,

Univ. of MD, Apr. 1991

75. International conference on signal processing, Cetraro, Italy, plenary

speaker, May 1991

76. International conference on ill-posed problems, plenary speaker,

Moscow, Aug. 1991

77. International Workshop on inverse problems, invited speaker, Novosi-

birsk, Aug. 1991

78. US-Israel NSF workshop on operator theory, Beer Sheva, Feb.1992,

invited speaker.

79. International Conference of Computational Engineering Science,

ICES-92, invited speaker, Dec. 1992, Hong Kong.

80. Third Midwest conference on geometry, Columbia, Apr. 1993.

81. International conference on quantum inversion, Bad Honnef, FRG,

May 1993, plenary speaker.

82. International conference on dynamical systems, May 1993, Atlanta,

plenary speaker.

83. International symposium on computerized tomography, Aug. 1993,

Novosibirsk, Russia, plenary speaker.

84. International symposium on numerical methods, Aug. 1993, Plovdiv,

plenary speaker.

85. International symposium on differential equations, Aug. 1993, Plov-

div, plenary speaker.

86. International symposium on Inverse problems, Sept. 1993, Potsdam,

FRG, plenary speaker.

87. Oberwolfach conference on pseudodifferential operators, Jan. 1994,

invited speaker.

88. Oberwolfach conference on tomography, Sep.1994, invited speaker.
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89. 26th Midwest conference on differential equations, invited speaker,

Oct 7–8, 1994.

90. International ASME conference, Chicago, Nov.7–11, 1994, invited

speaker, special session on inverse problems in mechanics.

91. AMS-SIAM workshop on inverse problems, March 1995, invited

speaker.

92. Oberwolfach conference on inverse problems, Feb. 1996, invited

speaker.

93. World Congress of Nonlinear Analysts, WCNA-96,Jul.10–17, 1996,

Athens, plenary speaker

94. International conference on inverse scattering, Sep.3–7, 1996, Lake

Balaton-96, plenary speaker

95. International conference on inverse and ill-posed problems, IIPP-96,

Sep.9–14, Moscow, plenary speaker.

96. Mexican math. soc. meeting, Oct.7–11, 1996, invited speaker.

97. ISAAC International Congress, June 2–7, 1997, plenary speaker.

98. The mathematics of life sciences, Jan. 28–31, 1998, Texas Tech. Univ.,

one-hour invited speaker.

99. International conference MTCP-98, modern trends in comput.

physics, Joint Instit. for Nuclear Research, Dubna, June 15–20, 1998,

plenary speaker.

100. Oberwolfach conference on tomography, Aug. 2–8, 1998, invited

speaker.

101. International conference “Operator theory and applications” Win-

nipeg, Oct. 7–11, 1998, plenary speaker

102. Workshop on the Radon transform, Univ. of Nagoya, Nov. 1998,

key-note speaker.

103. Braude College PDE days, main speaker, May 18–20, 1999,

104. Israel Math. Union annual meeting, invited speaker, May 26, 1999.

105. Internat. workshop on inverse problems and wave scattering, Lvov,

Sep. 20–23, 1999, plenary speaker.

106. Internat. conference PDE 2000, Clausthal, Germany, July 24–28,

2000.

107. Internat. conference on nonlinear analysis, Korea, Pusan, Aug. 31–

Sep. 5, 2000, plenary speaker.

108. Internat. conference on dynamical systems and chaos, Armenia, Sep.

11–18, 2000, plenary speaker.

109. Mathematics and medical imaging, Frontiers of Science Lecture, FAU,

Oct. 11, 2000
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110. Dynamical systems and linear and nonlinear ill-posed problems, Los

Alamos Nat. Lab, CNLS colloquium, Dec. 6, 2000

111. Inverse and direct problems and applications, Gargnano, Apr. 2–6,

2001, main lecturer

112. Dynamical systems and linear and nonlinear ill-posed problems, lec-

tures at the Auton. Univ., Mexico City, Sep.17–21, 2001.

113. AMRTMA conference on acoustic, mechanics and related topics of

mathematical analysis, June 2002, France.

114. Oberwolfach conference on tomography, Aug. 11–17, 2002

115. Conference on mathematical modelling of wave phenomena, Vaxjo

University, Sweden, Nov. 3–8, 2002, plenary speaker

116. Internat. workshop on random fields, Guanajuato, Nov 27–30, 2002,

plenary speaker

117. International seminar on nonlinear analysis and spectral problems,

Complutense Univ., Madrid, June 14–16, 2004, invited speaker

118. Workshop on PDE, Hebrew Univ., June 2004, invited speaker.

119. IPAM conference “Mathematics of the Ear and Sound Signal Process-

ing”, January 31–February 2, 2005

120. Midwest Geometry Conference, Apr 28-May 1, 2005, Ohio St. Univ

121. LMS lectures, May 24-June 10, 2005

122. HKSTAM, June 18, 2005, distinguished invited speaker.

123. 5icipe, Cambridge, July 9–16, 2005.

124. ICAM05-Internat. Conference on Appl. Math., Bandung, Aug. 22–

26, 2005, plenary speaker

125. ICMAA06-Internat. Conference on Math. Anal. and Appl., Assiut,

Egypt, Jan 3–6, 2006, plenary speaker.

126. Midwest geometry conference, Univ. of Oklahoma, May 5–7, 2006.

127. ETOPIM7, Sydney, July 9–14, 2006, plenary speaker.

128. IPDO-2007, Miami, Apr. 16–18, 2007, key-note speaker.

129. World Congress of Engineering and Applied Mathematics, London,

July 2–4, 2007, key-note speaker.

130. International Conference on Inverse Quantum Scattering Theory, Aug.

27–31, 2007, Hungary, Lake Balaton-Siofok, plenary speaker.

131. Workshop on PDE, Darmstadt, Sep. 24–26, 2007, invited speaker

132. Analysis of Multiphase Problems, Prague, Oct. 8–12, 2007, special

lecture.

133. IMDEA-Madrid, Nov 29, 2007, invited talk.

134. Oberwolfach workshop, Material Theories, Dec. 16–21, 2007, invited

speaker
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135. International Conference Chaos-2008, Chaotic modeling and simula-

tion, June 3–6, 2008, Chania, Crete, Greece, plenary speaker.

136. World Congress of Nonlinear Analysts, WCNA-2008, Orlando,

Florida, July2–9, 2009, key-note speaker.

137. International Conference Chaos-2009, Chaotic modeling and simula-

tion, June 1–5, 2009, Chania, Crete, Greece, plenary speaker,

138. PanAfrican Congress of Mathematicians, PACOM7, Aug. 3–8, 2009,

plenary one-hour speaker.

139. International Workshop, DIPED2009, Lvov, Sep.21–24, 2009, plenary

one-hour speaker.

140. International Conference Chaos-2010, June 1–5, 2010, Chania, Crete,

Greece, plenary speaker,

141. International Conference Computational methods in Applied Mathe-

matics, CMAM-4, June 20–26, 2010, Bedlewo, Poland,

142. International Conference Chaos-2011, May 31-June 3, 2011, Agios

Nikolaos, Crete, Greece, plenary speaker,

143. International Conference on Differential and Difference Equations and

Applications, July 4–8, 2011, Ponta Delgada, Univ of Azores, plenary

speaker.

144. ACEX-13, Plenary speaker, Madrid, July 1–5, 2013.

145. International Conference Chaos-2014, Plenary speaker, Lisbon, June

7–10, 2014

146. International Conference Chaos-2015, Plenary speaker, Paris, May 26–

29, 2015

147. International Conference MMET-2016, invited speaker, Lviv, July 5–

7, 2016

148. Intern. Conference Materials 2017, plenary speaker, Nov. 13–15, Las

Vegas, Renaissance Hotel.

149. Intern. Conference HSA-2020, Hungary, June 8–11, 2020, invited

speaker

150. Prague, Sep. 20–24, 2020, Internat. Conference on PDE, plenary

speaker.

151. Materials Science Conference, plenary speaker, Nov. 16–17, 2020,

Istanbul

152. How to create materials with a desired refraction coefficient? 2nd

Virtual Congress on Materials Science and Engineering, March 29–31,

2021, key-note speaker

153. Bremen Zoom Workshop on Light Scattering 2021, 22–23. March

2021, plenary speaker
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154. First Western Balkan Conference in Mathematics and Applications,

June 10–12, 2021, Analysis of the Navier-Stokes problem, plenary

speaker.

155. Third global webinar on Appl. Science, Engineering and Technology,

Feb. 19–20, 2022, How to create materials with a desired refraction

coefficient? Plenary talk.

156. Global Magnus group conference, March 28–30, Keynote talk, Analy-

sis of the Navier-Stokes problem.

157. “Solution of the millennium problem concerning the Navier-Stokes

equations”, Keynote talk at the World Conference on Physics and

Mathematics, May 22–23, 2023, Berlin, Germany

LIST OF COURSES TAUGHT:

Undergraduate courses:

Calculus and analytic geometry, advanced calculus, differential equations,

technical calculus, linear algebra, elementary PDE, integral equations, spe-

cial functions and their applications, mathematics:its form and impact.

Graduate courses:

Ordinary differential equations, PDE, functional analysis and its applica-

tions, spectral and scattering theory for differential equations, singular inte-

gral equations, complex analysis, theoretical numerical analysis, ill-posed

problems, integral transforms, asymptotic methods, iterative solution of

the static problems, mathematical methods for engineers, mathematics of

wave propagation, electrodynamics, quantum mechanics, integral equations

and applications, inverse scattering theory, inverse problems in analysis and

PDE, nonlinear functional analysis, theory of passive networks, entire func-

tions in antenna synthesis and optics, approximation theory, potential the-

ory, calculus of variations, distribution theory, probability theory, random

fields estimation theory.

Ph.D students

T. Miller, A. Zade-Chavoshi, Peiqing Li, A. Katsevich, Yan Chuntao,

R. Hayrapetyan, A. Smirnova, N.S. Hoang, S. Indratno, N. Tran, Cong Van.
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Articles for mathematical encyclopedia, Kluwer, Dordrecht, 2001,

Supplement volume 3.

1. Ordinary differential equations, property C for, pp. 295–296.

2. Local Tomography, pp. 241–242.

3. Partial Differential Equations, Property C for, pp. 298–299.

4. Inverse Scattering, half-axis case, pp. 209–211.

5. Inverse scattering, full line case, pp. 207–208.

6. Obstacle scattering, pp. 284–286.

7. Inverse scattering: multidimensional case, pp. 211–212.

8. Pseudolocal tomography, pp. 310–311.

9. Reproducing kernel, pp. 328–329.

10. Reproducing kernel Hilbert Space, pp. 329–331.

PROFESSIONAL PUBLICATIONS:

[1.] On the Kotelnikow’s theorem. Electrocommunication, 10, (1962),

71–72.

[2.] A necessary and sufficient condition for compactness of embedding,

Vestnik Leningr. Univ., N1, (1963), 150–151. (Math. Rev. 27

#1808)

[3.] Investigation of the scattering problem in some domains with infinite

boundaries I, II, Vestnik 7, (1963), 45–66; 19, (1963), 67–76. 27

#483, 23 #374.

[4.] Spectral properties of the Schrödinger operator in some domains with

infinite boundaries, Doklady Acad of Sci. USSR, 152, (1963) 282–

285. 27 #3930.

[5.] Absence of the discrete positive spectrum of the Dirichlet Laplacian

in some infinite domains. Vestnik 13, (1964), 153–156; N 1, (1966),

176. 30 #1295.

[6.] On the analytic continuation of the solution of the Schrödinger equa-

tion in the spectral parameter and the behavior of the solution to the

nonstationary problem as t → ∞, Uspechi Mat. Nauk, 19, (1964),

192–194.

[7.] Statement of the diffraction problem in domains with infinite bound-

aries. Proc. 3 all-union wave diffraction symp., Nauka, Moscow,

(1964), 28–31.
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[8.] Reconstruction of the shape of a domain from the scattering ampli-

tude. Proc. 3 all-union wave diffraction symp., Nauka, Moscow,

(1964), 143–144.

[9.] Conditions under which the scattering matrix is analytic, Doklady

Acad. of Sci. of USSR, 157, (1964), 1073–1075. 32 #2049.

[10.] Analytic continuation of the resolvent kernel of the Schrödinger oper-

ator in the spectral parameter and limiting amplitude principle in

some infinite domains, Doklady Acad. of Sci. Azerb. SSR, 21,

(1965), 3–7.

[11.] Spectral properties of the Schrödinger operator in some infinite

domains, Mat. Sbor. 66, (1965), 321–343. 30 #3297, 34 #7994.

[12.] On wave diffusion, Mathematics. Izvestija vuzov, 2, (1965), 136–138.

32 #1451.

[13.] On a method of solving the Dirichlet problem in some infinite

domains, Mathematics. Izvestija vuzov, 5, (1965), 124–127. 32

#7993.

[14.] On the conditions under which integral operators are nuclear and

existence of the S-matrix in the problem of scalar scattering on a

potential and surface. Ukrain. Math. Jour. 17, (1965), 92–98. 34

#1887.

[15.] Necessary and sufficient conditions for the validity of the limiting

amplitude principle. Doklady Acad of Sci. USSR, 163, (1965), 584–

586. 33 #7673.

[16.] Reconstruction of the domain shape from the scattering amplitude,

Radiotech. i Electron., 11, (1965), 2068–2070.

[17.] Reconstruction of a signal from its values on a discrete sequence of

time moments, Radiotech. i Electron., 11, (1965), 1957–1959.

[18.] Behavior of the solution to a nonstationary problem as t → ∞, Math-

ematics, Izvestija vuzov, 1, (1966), 124–138. 33 #7674.

[19.] Domain free from the resonances in the three-dimensional scattering

problem, Doklady Acad of Sci. USSR, 166, (1966), 1319–1322. 34

#3902.

[20.] Spectrum of Schrödinger operators with spin-orbit potential, Dok-

lady Acad of Sci. USSR, 169, (1966), 799–802. 34 #7993.

[21.] Antenna synthesis with the prescribed pattern. 22 sci. session dedi-

cated the day of radio, Moscow, 1966, section of antennas, 9–13.

[22.] Statement and numerical solution of inverse ionospheric problem, 22

sci. session dedicated the day of radio, Moscow, 1966, section wave

propagation, 3–6.
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[23.] Reconstruction of the potential and domain boundary from the scat-

tering amplitude, 22 sci. session dedicated the day of radio, Moscow,

1966, section wave propagation, 7–10.

[24.] Estimates of the temperature field for bodies of complicated shape.

In collection of papers Investigation of nonstationary heat and mass

transfer, Minsk, 1966, 64–70.

[25.] Some theorems on equations with parameters in Banach space, Dok-

lady Acad. of Sci. Azerb. SSR, 22, (1966), 3–6. 33 #7963.

[26.] Some inverse problems of wave propagation. Proc. of the 4-th all-

union wave diffraction symp., Moscow, 1967, 7–11.

[27.] Asymptotic behavior of eigenvalues in the case when the potential

depends on parameter, Math. Zametki, 1, (1967), 599–608. (with

Levitan B. M.). 37 #1817.

[28.] About estimates of the thermoresistances for bodies of complicated

shape, Eng. Phys. Journ., 13, 1967, 914–920.

[29.] On the limiting amplitude principle, Diff. eq., 4, (1968), 714–720.

37 #1759.

[30.] Estimates of the thermoresistances, Proc. of the third all-union con-

ference on heat and mass transfer, Minsk, 1968, 12–17.

[31.] Optimal solution of the antenna synthesis problem, Doklady Acad.

of Sci. USSR, 180, (1968), 1071–1074.

[32.] On numerical differentiation, Mathem., Izvestija vuzov, 11, (1968),

131–135. 40 #5130.

[33.] On equations of the first kind, Diff. eq. 4, (1968), 2056–2060. 40

#817; English transl., 1062–1064.

[34.] Asymptotic distribution of the Schrödinger operator eigenvalues

when the potential tends to infinity and the boundary is infinite,

Doklady Acad. of Sci. USSR, 183, (1968), 780–783. 40 #1827.

[35.] Some theorems on analytic continuation of the Schrödinger operator

resolvent kernel in the spectral parameter, Izvestiya Acad. Nauk

Armyan. SSR, Mathematics, 3, (1968), 443–464. 42 # 5563.

[36.] Random fields filtering in optical instruments in the case of finite

entrance pupil size, Optics and Spectroscopy, 26, N3, (1969),

421–428.

[37.] Perturbation by damping of the eigenfrequencies of small oscillations,

Appl. Math. and Mechanics, 33, (1969), 328–330. 40 #8318.

[38.] Filtering of nonstationary random fields in optical systems, Opt. and

Spectroscopy, 26, N5, (1969), 832–836.
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[39.] On antenna synthesis theory, Collection “Antennas” N 5, (1969),

35–46, Moscow, Izd. Svjaz.

[40.] Iterative solution of the integral equation in potential theory, Dok-

lady Acad. Sci. USSR, 186, (1969), 62–65. 41 #9462.

[41.] Nonlinear antenna synthesis problems, Doklady Acad. Sci. USSR,

186, (1969), 1277–1280. 41 #4904.

[42.] Apodization theory, Optics and Spectroscopy, 27, N3, (1969), 508–

514.

[43.] Filtering of nonhomogeneous random fields, Optics and Spec-

troscopy, 27, N6, (1969), 881–887.

[44.] Green’s function study for differential equation of the second order

in domains with infinite boundaries, Diff. eq. 5, (1969), 1509–1516.

40 #6078; E.t. 1111–1116.

[45.] Calculation of the scattering amplitude for the wave scattering from

small bodies of an arbitrary shape, Radiofisika, 12, (1969), 1185–

1197. 43 #7131.

[46.] Optimal solution of the linear antenna synthesis problem,

Radiofisika, 12, (1969), 1842–1848. 43 #8223.

[47.] Asymptotic behavior of the eigenvalues and eigenfunction expansions

for the Schrödinger operator with increasing potential in the domains

with infinite boundary. Izvestija Ac. Nauk. Arm. SSR, Mathemat-

ics, 4, (1969), 442–467. 42 #3451.

[48.] Nonlinear problems of antenna synthesis, Radiotech. i Electron., 15,

(1970), 21–28. Rad. Eng. El. Phys. 15, (1970), 15–22.

[49.] Nonlinear problem of plane antenna synthesis, Radiotech. i Elec-

tron., 15, (1970), 591–593. E. T. 500–503.

[50.] Eigenfunction expansion for nonselfadjoint Schrödinger operator,

Doklady Acad. Sci. USSR, 191, (1970), 50–53. 42 #703.

[51.] On some integral operators, Diff. eq., 6, (1970), 1439–1451. Et.

1096–1106. 42 #8339.

[52.] Exponential decay of solution of the hyperbolic equation, Diff. eq.,

6, (1970), 2099–2100. 44 #631. E.t. 1598–1599.

[53.] Apodization theory II, Opt. and Spectroscopy, 29, N2, (1970), 390–

394.

[54.] Increasing of the resolution ability of the optical instruments by

means of apodization, Opt. and Spectroscopy, 29,N3, (1970), 594–

599.

[55.] On resolution ability of optical systems, Opt. and Spectroscopy, 29,

N4, (1970), 794–798.
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[56.] Reconstruction of the shape of a reflecting body from the scattering

amplitude, Radiofisika, 13, (1970), 727–732.

[57.] Approximate formulas for polarizability tensors and capacitances of

bodies of arbitrary shapes and applications, Doklady Acad. Sci.

USSR, 195, (1970), 1303–1306. MR 55 #1947; E.t. 15, (1971),

1108–1111.

[58.] Filtering and extrapolation of some nonstationary random processes,

Radiotechnika i Electronika, 16, (1971), 80–87. E.t. 68–75.

[59.] Calculation of the initial field from the scattering amplitude,

Radiotechnika i Electronika, 16, (1971), 554–556.

[60.] Necessary and sufficient conditions for the validity of the limiting

amplitude principle, Dif. eq., 7, (1971), 366–367. 45 #5523; E.t.

284–285.

[61.] Eigenfunction expansions for exterior boundary problems, Dif. eq.,

7, (1971), 737–742. 44 # 2094; E.t. 565–569.

[62.] Approximate formulas for polarizability tensor and capacitances for

bodies of an arbitrary shape. Radiofisika, 14, (1971), 613–620. 47

#1386.

[63.] Iterative methods for solving some heat transfer problems, Engin.

Phys. Jour., 20, (1971), 936–937.

[64.] Electromagnetic wave scattering by small bodies of an arbitrary

shape, Proc. of the 5-th all-union sympos. on wave diffraction,

Trudy. Math. Inst. Steklova, Leningrad, 1971, 176–186.

[65.] On multidimensional integral equation with convolution kernel, Diff.

eq. 7, (1971), 2234- 2239. 44 #7235; E.t. 1683–1687.

[66.] Calculation of the magnetization of thin films, Microelectronics 6,

(1971), 65–68. (with Frolov).

[67.] Calculation of the scattering amplitude for electromagnetic wave

scattering by small bodies of arbitrary shapes II. Radiofisika, 14,

(1971), 1458- 1460.

[68.] Electromagnetic wave scattering by small bodies of an arbitrary

shape and related topics, Proc. Intern. Sympos. URSI, Moscow,

1971, 536–540.

[69.] Calculation of thermal fields by means of iterative processes, Proc.

4-th all-union conference on heat and mass transfer. Minsk, 1972,

133–137.

[70.] Calculation of the capacitance of a parallelepiped, Electricity, 5,

(1972), 90–91 (with M. Golubkova, V. Usoskin).

[71.] Simplified optimal differentiators, Radiotech.i Electron. 17, (1972),

1325–1328; E.t.1034–1037.
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[72.] On exterior diffraction problems, Radiotech.i Electron, 7, (1972),

1362–1365. 51 #4864; e.t. 1064–1067.

[73.] On the skin-effect theory. J. of Techn. Phys., 42, (1972), 1316–1317.

[74.] Calculation of the quasistationary states in quantum mechanics,

Doklady Acad. Sci. USSR, 204, (1972), 1071–1074. 56 #14326.

[75.] Calculation of the capacitance of a conductor placed in anisotropic

inhomogeneous dielectric, Radiofisika, 15, (1972), 1268–1270. 47

#2284.

[76.] Remark on integral equations theory, Diff. Uravneniya, 8, (1972),

1517–1520. 47 #2284; E.t. 1177–1180.

[77.] On some class of integral equations, Diff. Uravneniya, 9, (1973),

931–941. 49 #5749; E.t. 706–713.

[78.] Iterative process to solve the third boundary problem, Diff. Urav-

neniya, 9, (1973), 2075–2079. 48 #6861.

[79.] Optimal harmonic synthesis of generalized Fourier series and inte-

grals with randomly perturbed coefficients, Radiotechnika, 28,

(1973), 44–49.

[80.] Eigenfunction expansion corresponding the discrete spectrum,

Radiotech. i Electron., 18, (1973), 496–501. 50 #1641 E.t. 364–369.

[81.] Discrimination of the random fields in noises, Problems of informa-

tion transmission, 9, N3, (1973), 22–35. 48 #13439.

[82.] Light scattering matrix for small particles of an arbitrary shape, Opt.

and spectroscopy, 37, N1, (1974), 125–129.

[83.] Scalar scattering by the set of small bodies of an arbitrary shape,

Radiofisika, 17, (1974), 1062–1068.

[84.] New methods of calculation of the static and quasistatic electromag-

netic waves, Proc. of the Fifth Intern. sympos. “Radioelectronics-

74” Sofia, 3, (1974), 1–8 (report 12).

[85.] Influence of the shape of cosmic particles on the scattering ampli-

tude, Proc. all-union sympos. Interaction of cosmic dust with the

atmosphere. Ashkhabad, 1974, 11–12.

[86.] Approximate solution of some integral equations of the first kind,

Diff. eq. 11, (1975), 582–586. 51 #13613; E.t. 440–443.

[87.] Estimates of some functionals in quasistatic electrodynamics, Ukrain.

Phys. Jour., 5, (1975), 534–543. 56 #14165.

[88.] Filtering and signal detection for random fields and vectorial pro-

cesses, Proc. internat. confer. Prague, Sept. 1975, 45–59.

[89.] Existence uniqueness and stability of the periodic regimes in some

nonlinear networks, Proc. of the third intern. sympos. on network

theory, Split, Yugoslavia, Sept. 1975, 623–628.



Curriculum Vitae of Alexander G. Ramm 373

[90.] Diffraction losses in open resonators. Opt. and spectroscopy, 40, N1,

(1976), 160–163.

[91.] Boundary value problem with discontinuous boundary conditions,

Diff. eq. 13, (1976), 931–933. 54 #10830.

[92.] Investigation of a class of integral equations, Doklady Acad. Sci.

USSR, 230, (1976), 283–286. 54 #3341, 55 #1016.

[93.] Iterative process for calculation of the periodic and almost periodic

oscillations in some nonlinear systems, Radiotech. i Electron., 21,

(1976), 2429–2433.

[94.] Optimization of the resolution ability, Opt. and Spectroscopy, 42,

N3, (1977), 540–545 (with Rodionov).

[95.] Wave scattering by small particles, Opt. and Spectroscopy, 43, N3,

(1977), 523–531.

[96.] On simultaneous approximation of a function and its derivative by

interpolation polynomials, Bull. Lond. Math. Soc. 9, (1977), 283–

288.

[97.] New method of calculation of the stationary regimes in some nonlin-

ear networks, Proc. of Intern. Conf. on computer-aided design of

electron. and microwave systems. Hull, July, 1977.

[98.] A new class of nonstationary processes and fields and its applications,

Proc. 10 all-union sympos. “Methods of representation and analysis

of random processes and fields” Leningrad, 3, 1978, 40–43.

[99.] Existence of the periodic solutions to some nonlinear problems, Diff.

Eq., 13, (1977), 1701–1708; E.t. 1186–1191, 57 #10530.

[100.] On eigenvalues of some integral equations, Diff. Eq., 15, (1978),

932–934; 58 #1528. E.t. 665–667.

[101.] On stability of control systems, Diff. Eq., 15, (1978), 1670–1677.

E.t. 1188–1193.

[102.] Necessary and sufficient conditions for the validity of the limiting

amplitude principle, Mathematics, Izv. vuzov, 5, (1978), 96–102.

[103.] Perturbations, preserving asymptotics of spectrum, Atti Ac. Naz.

Lincei, ser. 8, vol. 64, fasc 1, Jan. (1978), p.30–31.

[104.] Investigation of a class of systems of integral equations, Proc. Intern.

Congr. on appl. math., Weimar, DDR, 1978, 345–351.

[105.] Existence, uniqueness and stability of solutions to some nonlinear

problems, Proc. Intern. Congr. on appl. math., Weimar, DDR,

1978, 352–356.

[106.] Existence in the large of solution of systems of nonlinear differential

equations, Bull. Acad. Pol. Sci., 9–10, (1978), pp. 795–797.



374 Curriculum Vitae of Alexander G. Ramm

[107.] Investigation of some classes of integral equations and their applica-

tion, In collection “Abel inversion and its generalizations”, edited by

N. Preobrazhensky, Siberian Dep. of Acad. Sci. USSR, Novosibirsk

1978, pp. 120–179.

[108.] A uniqueness theorem for the Dirichlet problem, Sibir. Math. J. N6,

(1978), 1421–1423.

[109.] Approximation by entire functions, Mathematics, Izv. vusov, 10,

(1978), 72–76.

[110.] On an integral equation, Comptes Rendus Acad. Sci. Bulg. 32, N6,

(1979), 715–717.

[111.] Iterative process for calculating periodic and almost periodic oscil-

lations in some nonlinear systems, Radiotech. i Electronica, 24, N1,

(1979), 190–191.

[112.] On uniqueness of harmonic coordinate systems in general relativity,

Uspehi Math. Nauk. 34, N1, (1979), 239–240 (with Mishnaevskii P.).

[113.] On a class of integral equations, Math. Nachr., 92, (1979), 21–24.

[114.] On nonlinear equations with unbounded operators, Math. Nachr.,

92, (1979), 13–20.

[115.] Linear filtering of some vectorial nonstationary random processes,

Math. Nachr., 91,(1979), 269–280.

[116.] On spectrum of operator Schrödinger equation, Rev. Roum. Math.

Pure et Appl. 25, (1980), 789–795.

[117.] Electromagnetic wave scattering by small bodies of arbitrary shapes,

in the book: “Acoustic, electromagnetic and elastic scattering-Focus

on T-matrix approach” Pergamon Press, N. Y. 1980. 537–546. (ed.

V. Varadan).

[118.] Theory and applications of some new classes of integral

equations, Springer-Verlag, New York, 1980.

[119.] Investigation of a class of systems of integral equations, J. Math.

Anal. Appl., 76,(1980), 303–308.

[120.] Perturbation preserving asymptotics of spectrum of linear operators,

J. Math. Anal. Appl., 76,(1980), 10–17.

[121.] Uniqueness theorem of use in general relativity, J. Math. Anal.

Appl., 75,(1980), 58–65. (with Mishnaevskii P.)

[122.] On the quasistatic boundary value problem of electrodynamics,

J. Math. Anal. Appl., 75, (1980), 300–305. (with C.L. Dolph)

[123.] Two sided estimates of the scattering amplitude at low energies,

J. Math. Phys., 21, (1980), 308–310.



Curriculum Vitae of Alexander G. Ramm 375

[124.] Analytical results in random fields filtering theory, Zeitschr. Angew.

Math. Mech., 60, (1980), T 361-T 363.

[125.] Nonselfadjoint operators in diffraction and scattering, Math. Meth-

ods in Appl. Sci., 2, (1980), 327–346.

[126.] A new proof of absence of positive discrete spectrum of the

Schrödinger operator, J. Math. Phys. 21, (1980), 2395–2397. (with

B. A. Taylor)

[127.] Eigenfunction expansion for nonselfadjoint operators, Rev. Roum.

Math. Pure Appl., 25, (1980), 797–809.

[128.] Theoretical and practical aspects of singularity and eigenmode

expansion methods, IEEE A-P, 28, N6, (1980), 897–901.

[129.] Stationary regimes in passive nonlinear networks, in “Nonlinear Elec-

tromagnetics”, Ed. P.L.E. Uslenghi, Acad. Press, N. Y., 1980, pp.

263–302.

[130.] A variational principle for resonances. J. Math. Phys. 21, (1980),

2052–53.

[131.] Existence uniqueness and stability of solutions to some nonlinear

problems. Appl. Analysis, 11, (1981), 223–232.

[132.] Exterior boundary value problems as limits of interface problems,

J. Math. Anal. Appl. 84, (1981), 256–263.

[133.] Stable solutions of some ill-posed problems, Math. Meth. in the

appl. Sci. 3, (1981), 336–363.

[134.] Variational principles for spectrum of compact nonselfadjoint opera-

tors, J. Math. Anal. Appl. 80, (198l), 291–293.

[135.] On the basis property for the root vectors of some nonselfadjoint

operators, Jour. Math. Anal. Appl. 80, (1981), 57–66.

[136.] On some properties of solutions of Helmholtz equation, J. Math.

Phys., 22, (1981), 275–276.

[137.] Spectral properties of some nonselfadjoint operators, Bull, Am.

Math. Soc., 5, N3, (1981), 313–315.

[138.] Existence, uniqueness, stability and calculation of the stationary

regimes in some nonlinear systems, Proc. of the AMS Special session

in Math. Physics, Boulder, CO, March 1980. Plenum Publish. Co.,

1981, 337–342.

[139.] Nonselfadjoint operators in diffraction and scattering, Proc. of the

AMS Special session in Math. Physics, Boulder, CO, March 1980.

Plenum Publish. Co., 1981, 179–182. (with C. L. Dolph)

[140.] Stability in the large and calculation of the stationary regimes in a

feedback nonlinear system. Proc. IEEE Intern. Sympos. on circuits

and systems, (1981), 955–956. (with G.S. Ramm)



376 Curriculum Vitae of Alexander G. Ramm

[141.] Spectral properties of some nonselfadjoint operators and some appli-

cations, in “Spectral theory of differential operators”, Math. Studies,

North Holland, Amsterdam, 1981, ed. I. Knowles and R. Lewis, 349–

354.

[142.] On the singularity and eigenmode expansion methods, Electromag-

netics, 1, N4, (1981), 385–394.

[143.] Electromagnetic wave scattering by small bodies, Nonlinear Vibr.

Probl., 20, (1981), 109–120.

[144.] Iterative methods for calculating static fields and wave scat-

tering by small bodies, Springer Verlag, New York, 1982.

[145.] Mathematical foundations of the singularity and eigenmode expan-

sion methods. J. Math. Anal. Appl., 86, (1982), 562–591.

[146.] Asymptotic of resonant states, J. Math. Anal. Appl., 87, (1982),

323–331. (with P.A. Mishnaevskii)

[147.] Perturbations preserving asymptotic of spectrum with a remainder.

Proc. Amer. Math. Soc., 85, N2, (1982), 209–212.

[148.] Variational principles for resonances II, J. Math. Phys., 23, N6,

(1982), 1112–1114.

[149.] Perturbation of resonances. J. Math. Anal. Appl. 88, (1982), 1–7.

[150.] Convergence of the T-matrix approach to scattering theory, J. Math.

Phys. 23, N6, (1982), 1123–1125.

[151.] Topics in scattering and spectral theory, Notices AMS, 29, (1982),

327–329.

[152.] Justification of the T-matrix approach, Proc. of the internat. IEEE

sympos. on Antennas and Propagation, Albuquerque 1982, vol. 1,

p. 13–14, 1982.

[153.] Convergence of the T-matrix approach in the potential scattering,

J. Math. Phys. 23, (1982), 2408–2409.

[154.] Investigation of a class of nonlinear integral equations and calculation

of passive nonlinear networks, Nonlin. Vibr., 21, (1983), 19–37.

[155.] Variational principles for eigenvalues of compact nonselfadjoint oper-

ators II, J. Math. Anal. Appl., 91, (1983), 30–38.

[156.] Eigenfunction expansions for some nonselfadjoint operators and the

transport equation, J. Math. Anal. Appl., 92, (1983), 564–580.

[157.] Convergence of the T-matrix approach in scattering theory II,

J. Math. Phys., 24, N 11, (1983), 2619- 2631. (with G. Kristens-

son and S. Ström)

[158.] Convergence of the T-matrix scheme, Proc. of the IEEE intern.

symposium on antennas and propagation, May 1983, Houston.



Curriculum Vitae of Alexander G. Ramm 377

[159.] Inverse scattering for geophysical problems, Phys. Letters, 99A,

(1983), 258–260.

[160.] An inversion formula in scattering theory. Phys, Lett., 99A, (1983),

201–204.

[161.] On a property of the set of radiation patterns, J. Math. Anal. Appl.,

98, (1984), 92–98.

[162.] A uniqueness theorem in scattering theory. Phys, Rev. Lett., 52,

N1, (1984), 13.

[163.] Scattering by a penetrable body, J. Math. Phys., 25, N3, (1984),

469–471.

[164.] Representations of solutions to Helmholtz’s equation, J. Math.

Phys., 25, N4, (1984), 807–809.

[165.] Existence of infinitely many purely imaginary resonances in the

problem of potential scattering, Phys. Lett., 101A, N4, (1984), 187–

188.

[166.] A uniqueness theorem in scattering theory, Phys. Rev., 102A, N5-6,

(1984), 218–219.

[167.] Description of the degree of nonuniqueness in inverse source problem,

J. Math. Phys., 25, N6, (1984), 1791–1793.

[168.] Estimates of the derivatives of random functions, J. Math. Anal.

Appl., 102, (1984), 244–250.

[169.] Remarks about inverse diffraction problem, J. Math. Phys., 25, N11,

(1984), 2672–2674.

[170.] Inverse scattering for geophysical problems II, Inversion of acoustical

data, J. Math. Phys., 25, N11, (1984), 3231–3234. (with A. Weglein)

[171.] Analytic theory of random fields estimation and filtering, Proc. of

the intern sympos. on Mathematics in systems theory (Beer Sheva,

1983), Lecture notes in control and inform. sci. N58, Springer Verlag,

1984, 764–773.

[172.] On inverse diffraction problem, J. Math. Anal. Appl., 103, (1984),

139–147.

[173.] Inverse diffraction problem, Inverse methods in electromagnetic

imaging, Reidel, Dordrecht, 1985, pp. 231–249. ( ed. W. Boerner)

[174.] Limit of the spectra of the interior Neumann problems when a solid

domain shrinks to a plane one, J. Math. Anal. Appl., 108, (1985),

107–112.

[175.] Extraction of resonances from transient fields, IEEE AP Trans., 33,

(1985), 223–226.



378 Curriculum Vitae of Alexander G. Ramm

[176.] Inverse scattering for geophysical problems III, On the velocity inver-

sion problems of acoustics, Proc. Roy. Soc. Lond., A 399, (1985),

153–166. (with P. Martin)

[177.] Scattering amplitude and algorithm for solving the inverse scattering

problem for a class of non-convex obstacles, Phys. Lett. A, 108A,

(1985), 238–240. (with H. Alber)

[178.] Calculating resonances (natural frquencies) and extracting them

from transient fields, J. Math. Phys., 26, N5, (1985) 1012–1020.

[179.] Inverse scattering for geophysical problems, Inverse Problems, 1, N2,

(1985) 133–172.

[180.] Numerical solution of integral equations in a space of distributions,

J. Math. Anal. Appl. 110, (1985), 384–390.

[181.] Estimates of the derivatives of random functions II, J. Math. Anal.

Appl. 110, (1985), 429–435. (with T. Miller)

[182.] Wave scattering by small bodies, Reports Math. Phys. , 21, (1985),

69–77.

[183.] On a uniqueness theorem in inverse scattering by an infinite surface

with a finite inhomogeneity, Opt. Comm., 59, (1985), 8–10. (with

M. Fiddy).

[184.] On the limit amplitude principle for a layer, Jour. für die reine und

angew. Math., 360, (1985), 19–46. (with P. Werner)

[185.] Offset measurements on a sphere at a fixed frequency do not

determine the inhomogeneity uniquely, Inverse problems, 1, (1985),

L35–L37.

[186.] Adjusting migration data for incompleteness: notes on Doeve’s

method, XX General conference, International Union for the sci-

entific study of population, Florence, Italy, June 1985, pp. 1–44.

Population index 52, N4, (1986). (with W. Doeve).

[187.] Inversion of the back scattering data and a problem of integral geom-

etry. Phys. Lett. 113A, (1985), 172–176.

[188.] Inverse scattering in an absorptive medium. Inverse problems, 2,

(1986), L5–L7.

[189.] Singularities of the inverses of Fredholm operators. Proc. of Roy.

Soc. Edinburgh, 102A, (1986), 117–121.

[190.] Scattering by obstacles, D. Reidel, Dordrecht, 1986, pp. 1–

442.

[191.] Inverse scattering for geophysical problems IV. Inversion of the

induction logging measurements. Geophysical prospecting, 34, N3,

(1986), 293–301.



Curriculum Vitae of Alexander G. Ramm 379

[192.] Behavior of solutions to exterior boundary value problems at low

frequencies, J. Math. Anal. Appl., 117, (1986), 561–569.

[193.] Scattering amplitude and algorithm for solving the inverse scattering

problem for a class of non-convex obstacles, J. Math. Anal. Appl.,

117, (1986), 570–597. (with H.D. Alber)

[194.] A geometrical inverse problem. Inverse problems, 2, (1986), L19–21.

[195.] Nonuniqueness of the solution to an inverse geophysical problem,

Inverse problems, 2, (1986), L23–25.

[196.] On completeness of the products of harmonic functions, Proc.

A.M.S., 99, (1986), 253–256.

[197.] Inverse scattering: asymptotic analysis, Inverse problems, 2, (1986),

L43–46. (with H.D. Alber)

[198.] Inversion of the Laplace transform from the real axis, Inverse prob-

lems, 2, (1986), L55–59.

[199.] Inverse scattering for geophysical problems when the background is

variable, J. Math. Phys., 27, (1986), 2687–2689.

[200.] An inverse problem for the Helmholtz equation in a semi-infinite

medium, Inverse problems, 3, (1987), L19–22.

[201.] A method for solving inverse diffraction problems, Inverse problems,

3, (1987), L23–25.

[202.] Characterization of the low-frequency scattering data in the inverse

problems of geophysics, Inverse problems, 3, (1987), L33–35.

[203.] Sufficient conditions for zero not to be an eigenvalue of the

Schrödinger operator, J. Math Phys., 28, (1987), 1341–1343.

[204.] Optimal estimation from limited noisy data, J. Math. Anal. Appl.,

125 (1987), 258–266.

[205.] Signal estimation from incomplete data, J. Math. Anal. Appl., 125

(1987), 267–271.

[206.] Analytic and numerical results in random fields estimation theory,

Math. Reports of the Acad. of Sci., Canada, 9, (1987), 69–74.

[207.] Recovery of the potential from I-function, Math. Reports of the

Acad. of Sci., Canada, 9, (1987), 177–182.

[208.] Example of a potential in one-dimensional scattering problem for

which there are infinitely many purely imaginary resonances, Phys.

Lett. A. 124, (1987), 313–319. (with B.A. Taylor)

[209.] Characterization of the scattering data in multidimensional inverse

scattering problem, in the book: “Inverse Problems: An Interdisci-

plinary Study.” Acad. Press, NY, 1987, 153–167. (Ed. P. Sabatier).



380 Curriculum Vitae of Alexander G. Ramm

[210.] A characterization of the scattering data in 3D inverse scattering

problem, Inverse problems, 3, (1987), L49–52. (with O. Weaver)

[211.] Necessary and sufficient conditions for a function to be the scattering

amplitude corresponding to a reflecting obstacle, Inverse problems,

3, (1987), L53–57.

[212.] An inverse problem for Helmholtz’s equation II, Inverse Problems, 3,

(1987), L59–61.

[213.] Necessary and sufficient conditions on the scattering data for the

potential to be in L2, Inverse Problems, 3, (1987), L71–L76

[214.] Completeness of the products of solutions to PDE and unique-

ness theorems in inverse scattering, Inverse problems, 3, (1987),

L77–L82

[215.] Inverse problem for Helmholtz’s equation, Intern J. of Math and

Math Sci., 10, (1987), 825–27

[216.] Equisummability for linear operators in Banach spaces, Proc. of Roy.

Soc. Edinburgh, 106A, (1987), 315–325. (with M. Kon, L. Raphael)

[217.] A uniqueness theorem for two-parameter inversion, Inverse Probl.,

4, (1988), L7–10.

[218.] A uniqueness theorem for a boundary inverse problem, Inverse

Probl., 4, (1988), L1–5.

[219.] Inverse scattering on half-line, J. Math. Anal. App. 133, 2, (1988),

543–572.

[220.] Multidimensional inverse problems and completeness of the products

of solutions to PDE, J. Math. Anal. Appl. 134, 1, (1988), 211–253;

139, (1989) 302.

[221.] An inverse problem for biharmonic equation, Int. J. of Math. and

Math. Sci., 11, (1988), 413–415.

[222.] Characterization of the scattering data in three dimensional inverse

scattering problems. Proc. of the fifth intern. seminar on model

optimization in explorational geophysics, editor A. Vogel, F. Vieweg

& Sohn, Braunschweig, 1988, pp. 39–45.

[223.] A uniqueness theorem for an inverse problem, Appl. Math. Lett 1,

(1988), 185–187.

[224.] Estimates for Green’s functions, Proc. Amer. Math. Soc., 103, N3,

(1988), 875- 881. (with L. Li)

[225.] Inversion of the acoustic well to well data, Appl Math. Letters, 1,

(1988), 127–131, (with J. Harris).

[226.] A criterion for completeness of the set of scattering amplitudes, Phys.

LettA. 129, (1988), 191–194.



Curriculum Vitae of Alexander G. Ramm 381

[227.] Conditions for zero not to be an eigenvalue of the Schrödinger oper-

ator, J. Math. Phys. 29, (1988), 1431–1432.

[228.] Recovery of the potential from fixed energy scattering data, Inverse

Problems, 4, (1988), 877–886; 5, (1989) 255.

[229.] A simple proof of uniqueness theorem in impedance tomography,

Appl. Math. Lett., 1, N3, (1988), 287–290.

[230.] Numerical method for solving 3D inverse scattering problems, Appl.

Math. Lett., 1, N4, (1988), 381–384.

[231.] Application of operator approximation to Fourier analysis, in the

book “Constructive theory of functions”, Proc. of the intern. confer-

ence on constructive theory of functions, Varna, May 24–31, (1987).

Publishing House of Bulgar. Acad. of Sciences, Sofia, 1988, pp.

276–282 (with M. Kon and L. Raphael).

[232.] Error estimate for a quadrature formula for H2 functions, Proc.

of the 1987 Oberwolfach conference on numerical integration in:

Numerical Integration III. Birkhauser, Basel, 1988, p. 199–201. (ed.

H. Brass and G. Hammerlin).

[233.] Uniqueness theorems for multidimensional inverse problems with

unbounded coefficients, J. Math. Anal. Appl. 136, (1988), 568–

574.

[234.] Numerical method for solving 3D inverse problems of geophysics,

J. Math. Anal. Appl., 136, (1988), 352–356.

[235.] Multidimensional inverse problems: Uniqueness theorems, Appl.

Math. Lett., 1, N4, (1988), 377–380.

[236.] Multidimensional inverse scattering problems and completeness of

the products of solutions to homogeneous PDE, Zeitschr. f. angew.

Math. u. Mech., 69, (1989) N4, T13–T22.

[237.] Numerical method for solving 3D inverse problems with complete and

incomplete data, In the book: “Wave Phenomena”, Springer-Verlag,

New York 1989, (eds. L. Lam and H. Morris), 34–43.

[238.] Numerical recovery of the 3D potential from fixed energy incomplete

scattering data, Appl. Math. Lett., 2, N1, (1989), 101–104.

[239.] An inverse problem for Helmholtz’s equation III, Appl. Math. Lett.

2, N1, (1989) 105–108.

[240.] Numerical recovery of the layered medium, J. of Comput. and Appl.

Math. 25, N3, (1989), 267–276. (with P. Li)

[241.] Necessary and sufficient condition for a scattering amplitude to cor-

respond to a spherically symmetric scatterer, Appl. Math. Let. 2,

(1989), 263–265.



382 Curriculum Vitae of Alexander G. Ramm

[242.] An inverse problem for Maxwell’s equations, Phys. Let. A 138(1989),

459–462.

[243.] Electromagnetic inverse problem with surface measurements at low

frequencies, Inverse Probl., 5, (1989), 1107–1116. (with E. Somer-

salo)

[243a] Electromagnetic inverse problems at low frequencies, Inverse meth-

ods in action (Montpellier, 1989), pp. 201–206, Inverse Probl. The-

oret. Imaging, Springer, Berlin, 1990. (with E. Somersalo)

[244.] Necessary and sufficient condition on fixed energy scattering data for

the potential to be spherically symmetric, Inverse Probl.5, (1989),

L45–47. (with O. Weaver)

[245.] Property C and uniqueness theorems for multidimensional inverse

spectral problem, Appl. Math. Lett., 3, (1990), 57–60.

[246.] Random fields estimation theory, Longman Scientific and

Wiley, New York, 1990.

[247.] Stability of the numerical method for solving the 3D inverse scat-

tering problem with fixed energy data, Inverse problems 6, (1990),

L7–12.

[248.] Algorithmically verifiable characterization of the class of scattering

amplitudes for small potentials, Appl. Math. Lett, 3, (1990), 61–65.

[249.] Is the Born approximation good for solving the inverse problem when

the potential is small? J. Math. Anal. Appl., 147, (1990), 480–485.

[250.] Random fields estimation theory, Math. and Comput. Modelling 13,

(1990), 87–100.

[251.] Dissipative Maxwell’s equations at low frequencies, Math. Meth. in

the Appl. Sci. 13, (1990), 305–322. (with O. Weaver, N. Weck, and

K. Witsch)

[252.] Completeness of the products of solutions of PDE and inverse prob-

lems, Inverse Probl.6, (1990), 643–664.

[253.] Calculating singular integrals as an ill-posed problem, Numer.

Math., 57, (1990) 139–145. (with van der Sluis)

[254.] Uniqueness result for inverse problem of geophysics I, Inverse Probl.

6, (1990), 635–642.

[255.] Uniqueness result for inverse problem of geophysics II, Appl. Math.

Lett., 3, (1990), 103–105. (with G. Xie)

[256.] Uniqueness theorems for geophysical problems with incomplete sur-

face data. Appl. Math. Lett.3, (1990), N4, 41–44.

[257.] An inverse problem for the wave equation, Math. Zeitschr., 206,

(1991) 119–130. (with J. Sjostrand).



Curriculum Vitae of Alexander G. Ramm 383

[258.] Numerical solution of some inverse problems of geophysics, Com-

puters and Mathematics with Applications, 21, (1991), 75–80 (with

Q. Zou)

[259.] Asymptotics of the solution to a singularly perturbed integral equa-

tion (with E.I. Shifrin), Appl. Math. Lett., 4, (1991), 67–70.

[260.] Symmetry properties for scattering amplitudes and applications to

inverse problems, J. Math. Anal. Appl., 156, (1991), 333–340.

[261.] Property C and an inverse problem for a hyperbolic equation,

J. Math. Anal. Appl., 156, (1991), 209–219. (with Rakesh)

[262.] Necessary and sufficient condition for a PDE to have property C,

J. Math. Anal. Appl.156, (1991), 505–509.

[263.] A singular perturbation result and its application to mathematical

ecology, Proc. AMS, 111, (1991), 1043–1050. (with L. Li)

[264.] Stability of the numerical method for solving 3D inverse scattering

problem with fixed energy data, J.f.die reine und angew. Math, 414,

(1991), 1–21.

[265.] Numerical solution of some integral equations in distributions, Com-

put. & Math with Appl. 21, (1991), 1–11. (with Peiqing Li)

[266.] Finding conductivity from boundary measurements, Comp.& Math.

with Appl., 21, N8, (1991), 85–91

[267.] Exact inversion of fixed-energy data, in the book Mathematical

and Numerical Aspects of Wave Propagation Phenomena, SIAM,

Philadelphia, (1991), pp. 481–486

[268.] Justification of Fabrikant’s method for solving mixed problems of

potential theory, Comp. and Math. with Appl., 22, N6, (1991),

97–104. (with V. Fabrikant).

[269.] Property C and inverse problems, ICM-90 Satellite Conference Pro-

ceedings, Inverse Problems in Engineering Sciences, Proc. of a con-

ference held in Osaka, Japan, Aug. 1990, Springer Verlag, New York,

1991, pp. 139–144.

[270.] Can a constant be a scattering amplitude? Phys. Lett., 154A, (1991),

35–37

[271.] Inversion of limited-angle tomographic data, Comp. and Math. with

Applic., 22, 4/5, (1991), 101–112.

[272.] On 3D inverse scattering, Comp. and Math. with Appl., 22, 4/5,

(1991), 1–26 (with O. Weaver)

[273.] On a problem of integral geometry, Comp. and Math. with Appl.,

22, 4/5, (1991), 113–118.



384 Curriculum Vitae of Alexander G. Ramm

[274.] Solution of some integral equations arising in integral geometry,

Appl. Math. Lett., 4, (1991), 177–181

[275.] An approximation problem, Appl. Math. Lett., 4, N5, (1991), 75–77.

[276.] Uniqueness theorem for a Goursat-Darboux type problem, Soviet

Math. Doklady, 321, 1, (1991), 19–22. (with P. Mishnaevskii)

[277.] Inversion of the Radon transform with incomplete data, Math. Meth-

ods in the Appl. Sci., 15, N3, (1992), 159–166.

[278.] Multidimensional inverse scattering problems, Longman/

Wiley, New York, 1992, pp. 1–385.

[279.] Stability of the solution to inverse scattering problem with exact

data, Appl. Math. Lett., 5, 1, (1992), 91–94

[280.] Inversion of incomplete Radon transform (with A. Katsevich) Appl.

Math. Lett., 5, N2, (1992), 41–46.

[281.] Inversion of limited-angle tomographic data II, Appl. Math. Lett.,

5, N2, (1992), 47–49.

[282.] Inverse scattering problem with fixed-energy data, Appl. Math.

Lett., 5, N4, (1992), 63–67.

[283.] A multidimensional Ambartsumian’s theorem, Appl. Math. Lett, 5,

N5, (1992), 87–88. (with P. Stefanov)

[284.] Uniqueness of the solution to a Goursat problem, Appl. Math. Lett.,

5, N6, (1992), 11–13. (with P. Mishnaevskii)

[285.] Stability estimates in inverse scattering, Acta Appl. Math., 28, N1,

(1992), 1–42.

[286.] FBP method for inversion of incomplete tomographic data, Appl.

Math. Lett., 5, N3, (1992), 77–80. (with A. Katsevich)

[287.] Numerical solution of 3D inverse scattering problems with noisy dis-

crete fixed-energy data, Appl. Math. Lett., 5, N6, (1992), 15–18.

[288.] Inversion of incomplete cone-beam data, Appl. Math. Lett., 5, N4,

(1992), 91–94. (with A. Zaslavsky)

[289.] Stability of the inversion of 3D fixed-frequency data, J. Math. Anal.

Appl., 169, N2(1992), 329–349.

[290.] Stability of the solution to 3D fixed-energy inverse scattering prob-

lem, J. Math. Anal. Appl., 170, N1 (1992), 1–15.

[291.] Singularities of the Radon transform, Bull. Am. Math. Soc., 25, N1,

(1993), 109–115. (with A. Zaslavsky)

[292.] Asymptotics of the solutions to singularly perturbed integral equa-

tions II., J. Math. Anal. Appl., 178, N2, (1993), 322–343. (with

E. Shifrin).



Curriculum Vitae of Alexander G. Ramm 385

[293.] Multidimensional algorithm for finding discontinuities of functions

from noisy data. Math. Comp. Modelling, 18, N1, (1993), 89–108.

(with A. Katsevich).

[294.] A criterion for property C, J. Math. Anal. Appl., 177, N2, (1993),

491–495. (with D. Markushevich)

[295.] Consistency of rank tests against some general alternatives, Math.

& Comput. Modelling, 18, N12, (1993), 49–56. (with A. Katsevich)

[296.] Uniqueness and inversion of cone-beam data, Appl. Math. Lett., 6,

N1 (1993), 35–38.

[297.] Property C with constraints and inverse spectral problems with

incomplete data, J. Math. Anal. Appl., 180, N1, (1993), 239–244

[298.] An inverse problem for the heat equation, Proc. Roy. Soc. Edin-

burgh, 123, N6, (1993), 973–976.

[299.] Reconstructing singularities of a function given its Radon trans-

form, Math. Comp. Modelling, 18, N1, (1993), 109–138, (with

A. Zaslavsky).

[300.] Stable calculation of the Legendre transform of noisy data, J. Math.

Anal. Appl. 178, N2, (1993), 592–602 (with A. Steinberg and

A. Zaslavsky).

[301.] Approximation by the scattering solutions and applications to inverse

scattering, Math. Comp. Modelling, 18, N1, (1993), 47–56.

[302.] Fixed-energy inverse scattering for non-compactly supported poten-

tials, Math. Comp. Modelling, 18, N1, (1993), 57–64. (with

P. Stefanov).

[303.] Asymptotics of the Fourier transform of piecewise-smooth functions,

Comptes Rendus Acad. Sci. Paris, 316, ser. 1, (1993), 541–545.

(with A. Zaslavsky).

[304.] Property C with constraints and inverse problems, J. of Inverse and

Ill-Posed Problems, 1, N3 (1993), 227–230.

[305.] Scattering amplitude is not a finite-rank kernel, J. of Inverse and

Ill-Posed Problems, 1, N4, (1993), 349–354. (with P. Stefanov)

[306.] Inverse scattering at fixed energy for exponentially decreasing poten-

tials, Proc. of the Lapland conference on inverse problems (with

P. Stefanov). Lecture notes in Phys, N422, Springer-Verlag, 1993,

189–192.

[307.] Algorithm for solving 3D inverse scattering problems with noisy dis-

crete fixed-energy data, Proceedings of ICES-92 conference on inverse

problems. In the book: Inverse Problems, Atlanta Technology Pub-

lications, Atlanta, Georgia, (1993), pp. 70–74.



386 Curriculum Vitae of Alexander G. Ramm

[308.] Property C and applications. Math. Comp. Modelling, 18, N1,

(1993), 1–4.

[309.] Scattering amplitude is not a finite rank kernel in the basis of spher-

ical harmonics, Appl. Math. Lett., 6, N5, (1993), 89–92.

[310.] New method for proving uniqueness theorems for obstacle inverse

scattering problems, Appl. Math. Lett., 6, N6, (1993), 19–22.

[311.] Scattering amplitude as a function of the obstacle, Appl. Math.

Lett., 6, N5, (1993), 85–87.

[312.] Inverse geophysical problems for some non-compactly supported

inhomogeneities, Appl. Math. Lett., 6, N6, (1993), 15–18. (with

D. Ghosh Roy)

[313.] Multidimensional inverse scattering problems, Mir Publish-

ers, Moscow, 1994, pp. 1–496. (Russian translation of the

expanded monograph 278).

[314.] A numerical approach to 3D inverse scattering problems, Appl.

Math. Lett.7, N2, (1994), 57–61.

[315.] X-ray transform, the Legendre transform and envelopes, J. Math.

Anal. Appl., 183, N3, (1994), 528–546. (with A. Zaslavsky)

[316.] Nonparametric estimation of the singularities of a signal from noisy

measurements, Proc. AMS, 120, N8, (1994), 1121–1134. (with

A. Katsevich)

[317.] Numerical method for solving inverse scattering problems, Doklady

of Russian Acad. of Sci., 337, N1, (1994), 20–22.

[318.] Low frequency inversion of surface data in a finite-depth ocean, Appl.

Math. Lett, 7, N1, (1994), 11–14 (with L. Couchman & D. Ghosh

Roy).

[319.] Multidimensional inverse scattering: solved and unsolved problems,

Proc. Intern. Confer. on Dynamical Syst. and Applic., Vol. 1,

Atlanta, (1994), pp. 287–296. (Eds. G. Ladde and M. Sambandham)

[320.] Inversion of fixed-frequency surface data for layered medium, J. of

Inverse and Ill-Posed Problems, 2, N3, (1994), 263–268

[321.] Stability estimate in scattering theory and its application to meso-

scopic systems and quantum chaos, Physics A, 27, N18, (1994), 6157–

6166. (with G. Berman)

[322.] A method for finding discontinuities of functions from tomographic

data, Proc. AMS-SIAM summer seminar on the mathematics of

tomography, impedance imaging and integral geometry, Lectures in

Appl. Math., Vol. 30 (1994), pp. 115–123. (with A.I. Katsevich)



Curriculum Vitae of Alexander G. Ramm 387

[323.] Uniqueness theorems for Goursat-type problems, J. Diff. Eq., 112,

N1, (1994), 250–255. (with P. Mishnaevskii)

[324.] Modeling of the ejection process, Math. and Comp. Modelling, 20,

N1, (1994), 95–102. (with I. Kaleps)

[325.] Stability of the solution to inverse obstacle scattering problem,

J. Inverse and Ill-Posed Problems, 2, N3, (1994), 269–275.

[326.] Optimal local tomography formulas, PanAmer. Math. Journ., 4,

N4, (1994), 125–127.

[327.] Stability of the solution to 3D inverse scattering problems with fixed-

energy data. Proc. ASME Nov.6–11, 1994, meeting. Inverse prob-

lems in mechanics, AMD-Vol 186, pp. 99–102.

[328.] Mathematical results in signal and image processing, Doklady of Rus-

sian Acad. Sci., 339, N1, (1994), 11–14. (with A. Katsevich)

[329.] Stability estimates for obstacle scattering, J. Math. Anal. Appl.

188, N3, (1994), 743–751.

[330.] Examples of nonuniqueness for an inverse problems of geophysics,

Appl. Math. Lett., 8, N4, (1995), 87–90.

[331.] Finding discontinuities from tomographic data, Proc. Amer. Math.

Soc., 123, N8, (1995), 2499–2505.

[332.] Property C with constraints, Compt. Rendus, Paris, ser 1,321, N 11,

(1995), 1413–1417.

[333.] Asymptotics of the solutions to singularly perturbed multidimen-

sional integral equations, J. Math. Anal. Appl., 190, N3, (1995),

667–677. (with E. Shifrin)

[334.] Continuous dependence of the scattering amplitude on the surface of

an obstacle, Math. Methods in the Appl. Sci., 18, (1995), 121–126.

[335.] An inverse problem for multiple scattering of fast charged particles

in mesoscopic medium, Phys. Rev. B, 51, N4, (1995), 2406–2409.

(with G. Berman).

[336.] Asymptotics of PDO on discontinuous functions near singular sup-

port, Appl. Analysis, 58, N3–4, (1995), 383–390. (with A. Katse-

vich).

[337.] New methods for finding values of the jumps of a function from its

local tomographic data, Inverse Problems, 11, N 5, (1995) 1005–1023.

(with A. Katsevich)

[338.] The Radon transform is an isomorhism between L2(B) and He(Za),

Appl. Math. Lett., 8, N1, (1995), 25–29.

[339.] Finding singular support of a function from its tomographic data,

Proc. Japan Acad., Math. Sci., 71, N3, (1995), 62–67. (with

A. Katsevich)



388 Curriculum Vitae of Alexander G. Ramm

[340.] A formula for inversion of boundary data, J. of Inverse and Ill-Posed

Problems, 3, N5, (1995), 411–415.

[341.] Radon transform on distributions, Proc. Japan Acad., ser A, 71, N9,

(1995), 202–206.

[342.] Inverse geophysical and potential scattering on a small body, in the

book: Experimental and Numerical Methods for Solving Ill-Posed

Inverse Problems: Medical and Nonmedical Applications, vol. SPIE-

2570, (1995), 151–162. (with A. Katsevich)

[343.] Uniqueness theorems for inverse obstacle scattering problems in Lip-

schitz domains, Applic. Analysis, 59, (1995), 377–383.

[344.] Inversion of cone-beam data and helical tomography, Jour. of Inverse

and Ill-Posed Probl. 3, N6, (1995), 429–445. (with V. Faber and

A. Katsevich)

[345.] Consistency of rank test against general alternatives of change points

(surfaces) and continuous trend, Acta Appl. Math., 42, N2, (1996),

105–137. (with A. Katsevich)

[346.] Finding jumps of a function using local tomography, PanAmer.

Math. Jour., 6, N2, (1996), 1–21. (with A. Katsevich)

[347.] Approximate inverse geophysical scattering on a small body, SIAM

J. Appl. Math., 56, N1, (1996), 192–218. (with A. Katsevich)

[348.] The Radon Transform and Local Tomography, CRC Press,

Boca Raton 1996, pp. 1–503. (with A. Katsevich)

[349.] Estimates from below for Lebesgue constants, J. Fourier Anal. and

Appl. 2, N3, (1996), 287–301. (with E. Liflyand and A. Zaslavsky)

[350.] Finding potential from the fixed-energy scattering data via D-N map,

J. of Inverse and Ill-Posed Problems, 4, N2,(1996), 145–152.

[351.] Completeness and non-completeness results for the set of products of

solutions to differential equations, Applicable Analysis, 60, (1996),

241–249. (with G. Porru)

[352.] The scattering problem analyzed by means of an integral equation

of the first kind, J. Math. Anal. Appl., 201, (1996), 324–327.

[353.] Necessary and sufficient conditions for a PDO to be a local tomog-

raphy operator, Comptes Rend Acad Sci, Paris, 332, N7, (1996),

613–618.

[354.] Inversion formulas for the backprojection operator in tomography,

Proc. Amer. Math. Soc., 124, N2, (1996), 567–577.

[355.] Approximate solution to inverse scattering problem for potentials

with small support, Math. Meth. in the Appl. Sci., 19, (1996),

1121–1134. (with A. Katsevich)



Curriculum Vitae of Alexander G. Ramm 389

[356.] Pseudolocal tomography, SIAM J. Appl. Math., 56, N1, (1996), 167–

191. (with A. Katsevich)

[357.] Existence and uniqueness of scattering solutions in non-smooth

domains, J. Math. Anal. Appl., 201, (1996), 329–338. (with A. Ruiz)

[358.] Minimization of the total radiation from an obstacle by a control

function on a part of the boundary, Jour. of Inverse and Ill-posed

Prob., 4, N6, (1996), 531–534.

[359.] Property C with constraints and PDE, Proc. of the Japan Acad.,

72A, N. 10, (1996), 235–237.

[360.] Random fields estimation theory, MIR, Moscow, 1996,

pp. 1–352 (expanded Russian edition of monograph 246).

[361.] Small body approximation and efficient algorithm for solving inverse

problems, Advances in Optic. Imaging and Photon migration, Opt.

Soc. of America, AWD4, (1996), pp. 1–4. (with A. Katsevich and

J. George)

[362.] New methods for finding discontinuities of functions from local tomo-

graphic data, Jour. of Inverse and Ill-Posed Problems, 5, N2, (1997),

165–174.

[363.] The Pompeiu problem, Applicable Analysis, 64, N1–2, (1997), 19–26.

[364.] Finding small objects from tomographic data, Inverse problems, 13,

(1997), 1239–1246 (with L. Desbat)

[365.] Multidimensional inverse scattering with fixed-energy data, in the

book “Quantum Inversion”, Lecture Notes in physics vol. 488, pp.

373–384, Springer Verlag, Berlin, 1997 (ed. B. Apagyi).

[366.] New approach to scattering in irregular waveguides, Math. Sci.

Research Hot-Line, 1, N3, (1997), 1–2.

[367.] Theory of ground-penetrating radars, Jour. of Inverse and Ill-Posed

Problems, 5, N4, (1997), 377–384. (with A. Shcheprov)

[368.] A method for finding small inhomogeneities from surface data, Math.

Sci. Research Hot-Line, 1, N10, (1997), 40–42.

[369.] Formula for the radius of the support of the potential in terms of the

scattering data, Jour. of Phys. A, 31, N1, (1998), L39–L44. (with

J.H. Arredondo and B.G. Izquierdo)

[370.] Scattering by obstacles in acoustic waveguides, In the book: Spectral

and scattering theory, Plenum publishers, New York, 1998 (ed. A.G.

Ramm), pp. 89–110. (with G. Makrakis)

[371.] Fundamental solutions to elliptic equations with discontinuous senior

coefficients and an inequality for these solutions. Math. Ineq. and

Applic., 1, N1, (1998), 99–104.



390 Curriculum Vitae of Alexander G. Ramm

[372.] Inverse acoustic scattering by layered obstacles (with C. Athanasiadis

and I. Stratis), In the book: Inverse problems, tomography and image

processing, Plenum Publishers, New York, 1998, pp. 1–8. (editor

A.G. Ramm).

[373.] Recovery of compactly supported spherically symmetric potentials

from the phase shift of s-wave, In the book: Spectral and scatter-

ing theory, Plenum publishers, New York, 1998 (ed. A.G. Ramm),

pp. 111–130.

[374.] Inequalities for norms of some integral operators Math. Ineq. and

Applic. 1, N2, (1998), 259–265.

[375.] Recovery of a quarkonium system from experimental data, Jour. of

Phys. A, 31, N15, (1998), L295-L299.

[376.] Compactly supported spherically symmetric potentials are uniquely

determined by the phase shift of s-wave, Phys. Lett. A, 242, N4–5,

(1998), 215–219.

[377.] On Saitoh’s characterization of the range of linear transforms, In the

book: Inverse problems, tomography and image processing, Plenum

publishers, New York, 1998, (ed. A.G. Ramm) pp. 125–128.

[378.] Spectral and scattering theory, Plenum publishers, New

York, 1998 (editor A.G. Ramm)

[379.] Inverse problems, tomography and image processing,

Plenum publishers, New York, 1998 (editor A.G. Ramm)

[380.] Theory of ground-penetrating radars II, Jour of Inverse and Ill-Posed

Probl., 6, N6, (1998), 619–624.

[381.] On the theory of reproducing kernel Hilbert spaces, Jour. of Inverse

and Ill-Posed Problems, 6, N5, (1998), 515–520.

[382.] Necessary and sufficient condition for a domain, which fails to have

Pompeiu property, to be a ball, Jour of Inverse and Ill-Posed Probl.,

6, N2, (1998), 165–171.

[383.] Inequality for the minimal eigenvalue of the Dirichlet Laplacian in

an annulus, Math. Inequalities and Applic. 1, N4, (1998), 559–563.

(with P.N. Shivakumar)

[384.] A new approach to the inverse scattering and spectral problems for

the Sturm-Liouville equation, Ann. der Phys., 7, N4, (1998), 321–

338.

[385.] Calculation of waves scattered in irregular waveguides, Proc. of the

third international seminar on “Direct and inverse problems of elec-

tromagnetic and acoustic wave theory: DIPED-98 pp. 57–61. (with

N. Voitovich, Yu. Topolyuk and N. Zdeoruk)



Curriculum Vitae of Alexander G. Ramm 391

[386.] Continuous analog of Gauss-Newton method, Math. Models and

Methods in Appl. Sci., 9, N3, (1999), 463–474. (with R. Airapetyan

and A. Smirnova)

[387.] Property C for ODE and applications to inverse scattering, Zeit. fuer

Angew. Analysis, 18, N2, (1999), 331–348.

[388.] A numerical method for solving nonlinear ill-posed problems, Numer-

ical Funct. Anal. and Optimiz., 20, N3, (1999), 317–332. (with A.B.

Smirnova)

[389.] A numerical method for some nonlinear problems, Math. Models

and Meth. in Appl. Sci., 9, N2, (1999), 325–335.

[390.] Inequalities for brachistohrone, Math. Ineq. and Applic., 2, N1,

(1999), 135–140.

[391.] Inverse problem for an inhomogeneous Schrödinger equation, Jour.

Math. Phys, 40, N8, (1999), 3876–3880.

[392.] Example of two different potentials which have practically the same

fixed-energy phase shifts, Phys. Lett A, 254, N3–4, (1999), 141–148.

(with R. Airapetyan and A. Smirnova).

[393.] Inverse scattering problem with part of the fixed-energy phase shifts,

Comm. Math. Phys. 207, N1, (1999), 231–247.

[394.] An approximate method for solving inverse scattering problem with

fixed-energy data, Jour. of Inverse and Ill-Posed Problems, 7, N6,

(1999), 561–571. (with W. Scheid)

[395.] Finding small inhomogeneities from scattering data, Jour. of Inverse

and Ill-Posed Problems, 8, N2, (2000), 205–210.

[396.] An inverse problem for point inhomogeneities, Methods of Functional

Analysis and Topology, 6, N2, (2000), 1–12. (with F. Gesztesy)

[397.] Inequalities for the derivatives, Math. Ineq. and Appl., 3, N1, (2000),

129–132.

[398.] The ground-penetrating radar problem III Jour. of Inverse and Ill-

Posed Problems, 8, N1, (2000), 23–31.

[399.] Application of the hybrid stochastic-deterministic minimization

method to a surface data inverse scattering problem, In the book

“Operator Theory and its Applications”, Amer. Math. Soc., Fields

Institute Communications vol. 25, Providence, RI, 2000, pp. 293–

304. (editors A.G. Ramm, P.N. Shivakumar, A.V. Strauss). (with

S. Gutman)

[400.] A numerical method for solving the inverse scattering problem with

fixed-energy phase shifts, Jour. of Inverse and Ill-Posed Problems,

8, N3, (2000), 307–322. (with A. Smirnova)



392 Curriculum Vitae of Alexander G. Ramm

[401.] Dynamical systems and discrete methods for solving nonlinear ill-

posed problems, Appl. Math. Reviews, vol. 1, Ed. G. Anastassiou,

World Sci. Publishers, 2000, pp. 491–536. isbn 981–02-4339–1. (with

R. Airapetyan)

[402.] Property C for ODE and applications to inverse problems, in the

book “Operator Theory and Its Applications”, Amer. Math. Soc.,

Fields Institute Communications vol. 25,(2000), pp. 15–75, Provi-

dence, RI. (editors A.G. Ramm, P.N. Shivakumar, A.V. Strauss).

[403.] Continuous methods for solving nonlinear ill-posed problems, In

the book “Operator theory and applications”, Amer. Math. Soc.,

Fields Institute Communications, Providence,RI, 2000, pp. 111–

138. (editors A.G. Ramm, P.N. Shivakumar, A.V. Strauss). (with

R. Airapetyan, A. Smirnova)

[404.] A new approach to inverse spectral theory III. Short range potentials,

J. d’Analyse Math., 80, (2000), 319–334. (with B. Simon)

[405.] Krein’s method in inverse scattering, in the book “Operator Theory

and Its Applications”, Amer. Math. Soc., Fields Institute Commu-

nications vol. 25, pp. 441–456, Providence, RI, 2000. (editors A.G.

Ramm, P.N. Shivakumar, A.V. Strauss),

[406.] Justification of the limiting absorption principle in R2, in the book

“Operator Theory and Its Applications”, Amer. Math. Soc., Fields

Institute Communications vol. 25, pp. 433–440, Providence, RI,

2000. (editors A.G. Ramm, P.N. Shivakumar, A.V. Strauss).

[407.] Operator Theory and Its Applications, Amer. Math. Soc.,

Fields Institute Communications vol. 25, Providence RI,

2000, pp. 1–600. (editors A.G. Ramm, P.N. Shivakumar, A.V.

Strauss).

isbn 0–8218-1990–9

[408.] Numerical inversion of the Laplace transform from the real axis,

J. Math. Anal. Appl., 248, (2000), 572–587. (with R. Airapetyan)

[409.] Existence and uniqueness of the scattering solutions in the exterior

of rough domains, in the book “Operator Theory and Its Applica-

tions”, Amer. Math. Soc., Fields Institute Communications vol. 25,

pp. 457–472, Providence, RI, 2000. (with M. Sammartino) (editors

A.G. Ramm, P.N. Shivakumar, A.V. Strauss).

[410.] A uniqueness result for the inverse transmission problem, Internat.

Jour. of Appl. Math., 2, N5, (2000), 625–634. (with P. Pang and

G. Yan)



Curriculum Vitae of Alexander G. Ramm 393

[411.] Numerical implementation of the cross section method for irregular

waveguides, Radiophysics and radioastronomy, 5, N3, (2000), 274–

283. (with N. Voitovich, O. Zamorska)

[412.] A non-overdetermined inverse problem of finding the potential from

the spectral function, IJDEA (Intern. J. of Diff. Eq. and Appl.), 3,

N1, (2001), 15–29.

[413.] An inverse problem of ocean acoustics, Jour. of Inverse and Ill-Posed

Probl., 9, N1, (2001), 95–102.

[414.] Singularities of the Radon transform, Applic. Analysis., 79, N3–4,

(2001), 351–379. (with R. Airapetyan)

[415.] On stable numerical differentiation, Mathem. of Computation, 70,

(2001), 1131–1153. (with A. Smirnova)

[416.] Embedding operators for rough domains, Math. Ineq. and Applic.,

4, N1, (2001), 127–141. (with V. Gol’dshtein)

[417.] Some identification problems for integro-differential operator equa-

tions, Nonlinear Functional Analysis and Applic., 6, N1, (2001), 107–

123. (with A. Lorenzi)

[418.] Linear ill-posed problems and dynamical systems, Jour. Math. Anal.

Appl., 258, N1, (2001), 448–456.

[419.] A simple proof of the Fredholm alternative and a characterization of

the Fredholm operators, Amer. Math. Monthly, 108, N 9, (2001),

855–860.

[420.] New proof of Weyl’s theorem, IJDEA (Intern. J of Diff Eq. and

Appl), 3, N1, (2001), 31–37.

[421.] Piecewise-constant positive potentials with practically the same

fixed-energy phase shifts, Applicable Analysis, 78, N1–2, (2001), 207–

217. (with S. Gutman)

[422.] An inverse problem for the heat equation, Jour. of Math. Anal.

Appl., 264, N2, (2001), 691–697.

[423.] An inverse problem for an abstract evolution equation, Applic. Anal-

ysis, 79, N3–4, (2001), 475–482. (with S. Koshkin)

[424.] Reconstruction of the potential from I-function, Jour. of Inverse and

Ill-Posed Probl., 10, N4, (2002), 385–395.

[425.] Stability of solutions to inverse scattering problems with fixed-energy

data, Milan Journ of Math., 70, (2002), 97–161.

[426.] Continuous regularized Gauss-Newton-type algorithm for nonlinear

ill-posed equations with simultaneous updates of inverse derivative,

Intern. Jour. of Pure and Appl Math., 2, N1, (2002), 23–34. (with

A.B. Smirnova)



394 Curriculum Vitae of Alexander G. Ramm

[427.] Stable identification of piecewise-constant potentials from fixed-

energy phase shifts, Jour. of Inverse and Ill-Posed Probl., 10, N4,

(2002), 345–360. (with S. Gutman)

[428.] Regularization of ill-posed problems with unbounded operators,

J. Math. Anal. Appl., 271, (2002), 547–550.

[429.] Numerically efficient version of the T-matrix method, Applic. Anal-

ysis, 80, N3, (2002), 385–393.

[430.] Modified Rayleigh Conjecture and applications, Jour. Phys. A, 35,

(2002), L357–361.

[431.] Analysis of the Newton-Sabatier scheme for inverting fixed-energy

phase shifts, Applic. Analysis, 81, N4, (2002), 965–975.

[432.] Estimation of random fields, Theory of Probability and Math. Statis-

tics, 66, (2002), 95–108. Translation: Theory Probab. Math. Statist.

No. 66 (2003), 105–118.

[433.] A counterexample to a uniqueness result, Applic. Analysis, 81, N4,

(2002), 833–836.

[434.] Recovery of small inhomogeneities from partial boundary measure-

ments, Compt. Rendus Acad. Sci. Paris, ser IIb, 330, N3, (2002),

199–205. (erratum C.R. Mechanique, 330 (2002), 601). (with H.

Ammari)

[435.] Inverse scattering by the stability index method, Jour. of Inverse

and Ill-Posed Probl., 10, N5, (2002), 487–502. (with S. Gutman and

W. Scheid)

[436.] Convergence rates of the continuous regularized Gauss-Newton

method, Jour. Inv. Ill-Posed Probl., 10, N3, (2002), 261–280. (with

B. Kaltenbacher and A. Neubauer)

[437.] Numerical implementation of the MRC method, J. Phys A., 35,

(2002), 8065–8074. (with S. Gutman)

[438.] An inverse problem for the heat equation II, Applic. Analysis, 81,

N4, (2002), 929–937.

[439.] Acceleration of convergence of a continuous analog of the Newton

method, Applic. Analysis, 81, N4, (2002), 1001–1004.

[440.] Injectivity of the spherical means operator, Compt. Rend. Acad

Sci., Paris, Ser I, 335, N12, (2002), 1033–1038.

[441.] Stable numerical differentiation: when is it possible? Jour. Korean

SIAM, 7, N1, (2003), 47–61. (with A. Smirnova)

[442.] Analytical solution of a new class of integral equations, Diff. Integral

Eqs, 16, N2, (2003), 231–240.



Curriculum Vitae of Alexander G. Ramm 395

[443.] Continuous modified Newton’s-type method for nonlinear operator

equations, Ann. di Mat. Pure Appl, 182, N1, (2003), 37–52. (with

A. Smirnova, A. Favini)

[444.] On a new notion of regularizer, J. Phys A, 36 (2003), 2191–2195.

[445.] Comments on the letter of P. Sabatier, http://arXiv.org/abs/math-

ph/0308025, PaperId: math-ph/0308025.

[446.] Optimal with respect to accuracy algorithms for calculation of multi-

dimensional weakly singular integrals and applications to calculation

of capacitances of conductors of arbitrary shapes, Acta Applicandae

Math, 79, N3, (2003), 281–326. (with I. Boikov)

[447.] On deconvolution methods, Internat. Jour. of Engin. Sci., 41, N1,

(2003), 31–43. (with A. Galstian)

[448.] Inequalities for the transformation operators and applications,

JIPAM (Jour. of Inequalities in Pure and Appl. Math.) 4, N4,

(2003), pp. 1–9. (paper 69).

[449.] On the discrepancy principle, Nonlinear Functional Anal. and

Applic., 8, N2, (2003), 307–312.

[450.] Equations for the self-consistent field in random medium, Phys. Lett.

A, 312, N3–4, (2003), 256–261.

[451.] A characterization of unbounded Fredholm operators, Cubo a

Mathem. Journ., 5, N3, (2003), 91–95.

[452.] Global convergence for ill-posed equations with monotone operators:

the dynamical systems method, J. Phys A, 36, (2003), L249–L254.

[453.] Support function method for inverse obstacle scattering problems,

In the book “Acoustics, mechanics and related topics of mathemat-

ical analysis”, World Scientific, New Jersey, 2003, (ed. A. Wirgin),

pp. 178–184. (with S. Gutman)

[454.] Dynamical systems method for solving nonlinear operator equations,

International Jour. of Applied Math. Sci., 1, N1, (2004), 97–110.

[455.] Explanation of Feynman’s paradox concerning low-pass filters, Inter-

national Jour. of Applied Math. Sci., 1, N1, (2004), 111–116 (with

O.L. Weaver)

[456.] Dynamical systems method for solving operator equations, Commu-

nic. in Nonlinear Sci. and Numer. Simulation, 9, N2, (2004), 383–

402.

[457.] Inequalities for solutions to some nonlinear equations, Nonlinear

Functional Anal. and Applic., 9, N2, (2004), 233–243.

[458.] Optimization methods in direct and inverse scattering, The optimiza-

tion research bridge, No 13, 2004, pp. 1–4.

http://arXiv.org/abs/math-ph/0308025
http://arXiv.org/abs/math-ph/0308025


396 Curriculum Vitae of Alexander G. Ramm

http://www.ballarat.edu.au/ard/itms/CIAO/ORBNewsletter/ (with

S. Gutman)

[459.] Inverse scattering with fixed-energy data, Jour. of Indones. Math.

Soc., 10, N1, (2004), 53–62.

[460.] One-dimensional inverse scattering and spectral problems, Cubo a

Mathem. Journ., 6, N1, (2004), 313–426.

[461.] Modified Rayleigh Conjecture for scattering by periodic structures,

International Jour. of Applied Math. Sci., 1, N1, (2004), 55–66.

(with S. Gutman)

[462.] Continuity of solutions to operator equations with respect to a

parameter, Internat. Jour. of Pure and Appl. Math. Sci., 1, N1,

(2004), 1–5.

[463.] Numerical solution of obstacle scattering problems, Internat. Jour.

of Appl. Math and Mech., 1, (2005), 1–32. (with S. Gutman)

[464.] An essay on some problems of approximation theory, In the book:

Ten Mathematical Essays on Approximation in Analysis and Topol-

ogy, Elsevier, Boston, 2005, pp. 245–262 (Eds J. Perrera, J. Lopez-

Gomez, F. Ruiz del Portal), isbn 0–444-51861–4

[465.] On deconvolution problems: numerical aspects, Jour. Comp. Appl.

Math., 176, N2, (2005), 445–460. (with A. B. Smirnova)

[466.] Dynamical systems method and surjectivity of nonlinear maps, Com-

munic. in Nonlinear Sci. and Numer. Simulation, 10, N8, (2005),

931–934.

[467.] Analysis of a linear sampling method for identification of obsta-

cles, Acta Appl. Math. Sinica, 21, N3, (2005), 399–404. (with

S. Gutman)

[468.] Symmetry problems in the elasticity theory problem for plane cracks

of normal rapture, Prikl. Math. Mech., 69, No 1., (2005), 146–154.

English translation: Journ of Appl. Math. and Mechan., 69, (2005),

127–134. (with E. Shifrin)

[469.] DSM for ill-posed equations with monotone operators, Comm. in

Nonlinear Sci. and Numer. Simulation, 10, N8, (2005), 935–940.

[470.] Inverse problems, Springer, New York, 2005.

[471.] Inequalities for the derivatives and stable differentiation of piecewise-

smooth discontinuous functions, Math. Ineq and Applic., 8, N1,

(2005), 169–172.

[472.] Necessary and sufficient conditions for compactness of the embedding

operator, JIPAM (Jour. of Ineq. in Pure and Appl. Math), 6, N5,

Article 130, (2005).

http://www.ballarat.edu.au/ard/itms/CIAO/ORBNewsletter/


Curriculum Vitae of Alexander G. Ramm 397

[473.] Determination of the shape of the ear channel, Math. Sci. Res.

Journ., 9(6)(2005), 139–141.

[474.] Discrepancy principle for the dynamical systems method, Communic.

in Nonlinear Sci. and Numer. Simulation, 10, N1, (2005), 95–101

[475.] Modified Rayleigh Conjecture method for multidimensional obstacle

scattering problems, Numer. Funct. Anal. and Optimization, 26,

N2, (2005), 69–80. (with S. Gutman)

[476.] Wave scattering by small bodies of arbitrary shapes, World

Sci. Publishers, Singapore, 2005.

[477.] Embedding operators and boundary-value problems for rough

domains, Intern. Jour. of Appl. Math. Mech., 1, (2005), 51–72.

(with V. Gol’dshtein)

[478.] Integral operators basic in random fields estimation theory, Internat.

Jour. of Pure and Appl. Math. (IJPAM), 20, No. 3, (2005), 405–

427. (with A. Kozhevnikov)

[479.] Optimization methods in direct and inverse scattering, in the book:

Continuous Optimization: Current Trends andModern Applications,

Springer, New York, 2005, pp. 51–110. (Editors: V. Jeyakumar and

A. M. Rubinov). (with S. Gutman)

[480.] A new discrepancy principle, J. Math. Anal. Appl., 310, (2005),

342–345.

[481.] Modified Rayleigh Conjecture for static problems, Appl. Math.

Lett., 18, N12, (2005), 1396–1399.

[482.] Numerical method for solving obstacle scattering problems by an

algorithm based on the Modified Rayleigh Conjecture, Intern. Jour.

Appl Math. Sci, 2, N1, (2005), 11–21. (with W. Chen)

[483.] Singular perturbation theory for a class of Fredholm integral equa-

tions arising in random fields estimation theory, Integral Equations

and Operator Theory (IEOT), 53, N1, (2005), 107–126. (with

E. Shifrin)

[484.] Inverse problems for parabolic equations, Austral. Jour. Math.

Anal. Appl. (AJMAA), 2, N2, (2005), Article 10, pp. 1–5.

[485.] Dynamical systems method (DSM) and nonlinear problems, in the

book: Spectral Theory and Nonlinear Analysis, World Scientific Pub-

lishers, Singapore, 2005, 201–228. (ed J. Lopez-Gomez).

[486.] Random fields estimation, World Sci. Publishers, Singapore,

2005.

[487.] Uniqueness of the solution to inverse obstacle scattering problem,

Phys. Lett A, 347, N4–6, (2005), 157–159.



398 Curriculum Vitae of Alexander G. Ramm

[488.] Dynamical systems method for nonlinear equations in Banach spaces,

Communic. in Nonlinear Sci. and Numer. Simulation, 11, N3,

(2006), 306–310.

[489.] Dynamical systems method and a homeomorphism theorem, Amer.

Math. Monthly, 113, N10, (2006), 928–933.

[490.] A nonlinear singular perturbation problem, Asymptotic Analysis, 47,

N1–2, (2006), 49–53.

[491.] Dynamical systems method (DSM) for unbounded operators, Proc.

Amer. Math. Soc., 134, N4, (2006), 1059–1063.

[492.] Completeness of the set of scattering amplitudes, Phys. Lett. A,

360, N1, (2006), 22–25.

[493.] Modified Rayleigh conjecture method with optimally placed sources,

Jour. of Appl. Functional Analysis, 1, N2, (2006), 223–236. (with

S. Gutman)

[494.] A scheme for a stable numerical differentiation, Jour. Comp. Appl.

Math, 186, N2, (2006), 325–334. (with U Jin Choi and Soyoung

Ahn)

[495.] Existence of a solution to a nonlinear equation, Jour. Math. Anal.

Appl., 316, (2006), 764–767.

[496.] The shape of the ear canal, Phys. Lett. A., 355, N4–5, (2006),

247–249.

[497.] Finding discontinuities of piecewise-smooth functions, JIPAM (Journ

of Inequalities in Pure and Appl. Math.) 7, N2, Article 55, pp. 1–7

(2006).

[498.] Compactness of embeddings, Nonlinear Functional Analysis and

Applications, 11, N4, (2006), 655–658.

[499.] Dynamical systems method for solving operator equations,

Elsevier, Amsterdam, 2007.

[500.] Ill-posed problems with unbounded operators, Journ. Math. Anal.

Appl., 325, (2007), 490–495.

[501.] Dynamical systems method (DSM) for selfadjoint operators, Jour.

Math. Anal. Appl., 328, (2007), 1290–1296.

[502.] Two results on ill-posed problems, Internat. Journ. Appl. Math.

and Statist., 11, N7, (2007), 136–139.

[503.] Inverse problems for parabolic equations 2, Communic. in Nonlinear

Sci. and Numer. Simulation, 12, (2007), 865–868.

[504.] Iterative solution of linear equations with unbounded operators,

Jour. Math. Anal. Appl., 330, N2, (2007), 1338–1346.

[505.] A Schrödinger singular perturbation problem, Communic. in Non-

linear Sci. and Numer. Simulation, 12, (2007), 1390–1394.



Curriculum Vitae of Alexander G. Ramm 399

[506.] Electromagnetic wave scattering by many small particles, Phys. Lett.

A, 360, N6, (2007), 735–741.

[507.] Materials with the desired refraction coefficients can be made by

embedding small particles, Phys. Lett. A, 370, 5–6, (2007),

522–527.

[508.] Scattering by many small bodies and applications to condensed mat-

ter physics, Europ. Phys. Lett., 80, (2007), 44001.

[509.] Many-body wave scattering by small bodies and applications,

J. Math. Phys., 48, N10, (2007), 103511.

[510.] Wave scattering by small particles in a medium, Phys. Lett. A 367,

(2007), 156–161.

[511.] Wave scattering by small impedance particles in a medium, Phys.

Lett. A 368, N1–2,(2007), 164–172.

[512.] A symmetry problem, Ann. Polon. Math., 92, (2007), 49–54.

[513.] Distribution of particles which produces a desired radiation pattern,

Communic. in Nonlinear Sci. and Numer. Simulation, 12, N7,

(2007), 1115–1119.

[514.] Computational method for acoustic wave focusing, Intern. Journ.

Comp. Sci. and Math., 1, N1, (2007), 1–15. (with S. Gutman)

[515.] Distribution of particles which produces a “smart” material, Jour.

Stat. Phys., 127, N5, (2007), 915–934.

[516.] Distribution of particles which produces a desired radiation pattern,

Physica B, 394, N2, (2007), 253–255.

[517.] Invisible obstacles, Ann. Polon. Math., 90, N2, (2007), 145–148.

[518.] Many-body wave scattering by small bodies, J. Math. Phys., 48, N2,

023512, (2007).

[519.] Creating wave-focusing materials, Inverse Problems, Design and

Optimization, IPDO-2007 Vol. II, (2007), pp. 687–690. (Ed.

G. Dulikravich et al).

[520.] Distribution of particles creating “smart” material, International

Journ. Tomog. Stat., 8, (2008), 25–31.

[521.] An inverse problem with data on the part of the boundary, Comm.

Nonlin. Sci. and Numer. Simulation, 13, (2008), 534–538.

[522.] On unbounded operators and applications, Appl. Math. Lett., 21,

(2008), 377–382.

[523.] Inverse scattering problem with data at fixed energy and fixed inci-

dent direction, Nonlinear Analysis: Theory, Methods and Applica-

tions, 69, N4, (2008), 1478–1484.

[524.] Creating wave-focusing materials, LAJSS (Latin-American Journ. of

Solids and Structures), 5, (2008), 119–127.



400 Curriculum Vitae of Alexander G. Ramm

[525.] Discrepancy principle for DSM II, Comm. Nonlin. Sci. and Numer.

Simulation, 13, (2008), 1256–1263.

[526.] Solving ill-conditioned linear algebraic systems by the dynamical sys-

tems method (DSM), Inverse Problems in Sci. and Engineering, 16,

N5, (2008), 617–630. (with N.S. Hoang)

[527.] Modified Rayleigh Conjecture method and its applications, Nonlin-

ear Analysis: Theory, Methods and Appl., 68, (2008), 3884–3908.

(with S. Gutman)

[528.] Electromagnetic wave scattering by many conducting small particles,

J. Phys A, 41, (2008), 212001.

[529.] Dynamical systems method (DSM) for general nonlinear equations,

Nonlinear Analysis: Theory, Methods and Appl., 69, N7, (2008),

1934–1940.

[530.] On stable numerical differentiation, Australian J. Math. Anal.

Appl., 5, N1, (2008), Article 5, pp. 1–7. (with N.S. Hoang)

[531.] Fixed-energy inverse scattering, Nonlinear Analysis: Theory, Meth-

ods and Appl., 69, N3, (2008), 971–978.

[532.] Some results on inverse scattering, Modern Phys. Lett. B, 22, N23,

(2008), 2217–2240.

[533.] A recipe for making materials with negative refraction in acoustics,

Phys. Lett. A, 372/13, (2008), 2319–2321.

[534.] Does negative refraction make a perfect lens? Phys. Lett. A, 372,

(2008), 6518–6520.

[535.] Electromagnetic wave scattering by small bodies, Phys. Lett. A,

372/23, (2008), 4298–4306.

[536.] Wave scattering by many small particles embedded in a medium,

Phys. Lett. A, 372/17, (2008), 3064–3070.

[537.] Creating materials with desired properties, Mathem. Forschungsinst.

Oberwolfach, report 58/2007, pp. 10–13. “Material Theories” Dec.

16–22, 2007.

[538.] A nonlinear inequality, Jour. Math. Ineq., 2, N4, (2008), 459–464.

(with N.S. Hoang)

[539.] An iterative scheme for solving nonlinear equations with monotone

operators, BIT Numer. Math. 48, N4, (2008), 725–741. (with N.S.

Hoang)

[540.] Creating wave-focusing materials, Direct and Inverse Problems of

Electromagnetic and Acoustic Wave Theory, 2008. DIPED 2008.

13th International Seminar/Workshop, pp. 31–37. ISBN: 978-966-

02–4649-2



Curriculum Vitae of Alexander G. Ramm 401

[541.] Identification of obstacles for parabolic problems, Internat. Jour.

Tomog. Stat., 11, S09, (2009), 53–60. (with H. Heck)

[542.] Dynamical systems method for solving linear ill-posed problems,

Ann. Polon. Math., 95, N3, (2009), 253–272.

[543.] Dynamical systems method for solving linear finite-rank operator

equations, Ann. Polon. Math., 95, N1, (2009), 77–93. (with N.S.

Hoang)

[544.] An inverse problem for a heat equation with piecewise-constant ther-

mal conductivity, J. Math. Phys., 50, 063512 (2009). (with N.S.

Hoang)

[545.] A DSM proof of surjectivity of monotone nonlinear mappings, Annal.

Polon. Math., 95, N2, (2009), 135–139.

[546.] Finding the position of a small body in the presence of a large body

from scattering data, Inverse Probl. in Sci. and Engineering (IPSE),

17, N5, (2009), 699–712. (with Y. Ol’shansky)

[547.] Some open problems in analysis, Austral Jour. Math. Anal. Appl.

(AJMAA), (2009)

[548.] Asymptotics of the solution to Robin problem, J. Math. Anal. Appl.,

349, N1, (2009), 156–164. (with H.-D. Alber)

[549.] Dynamical Systems Gradient method for solving nonlinear equations

with monotone operators, Acta Appl. Math., 106, (2009), 473–499.

(with N.S. Hoang)

[550.] A new version of the Dynamical Systems Method (DSM) for solving

nonlinear equations with monotone operators, Diff. Eqns and Appl.,

1, N1, (2009), 1–25. (with N.S. Hoang)

[551.] On the relation between the S-matrix and the spectrum of the inte-

rior Laplacian, Bull. Polish Acad of Sci. Mathem., 57, N2, (2009),

181–188.

[552.] Preparing materials with a desired refraction coefficient and appli-

cations, In the book “Topics in Chaotic Systems: Selected Papers

from Chaos 2008 International Conference”, Editors C. Skiadas, I.

Dimotikalis, Char. Skiadas, World Sci. Publishing, 2009, pp. 265–

273.

[553.] Preparing materials with a desired refraction coefficient, Nonlinear

Analysis: Theory, Methods and Appl., 70, N12, (2009), e186-e190.

[554.] A discrepancy principle for equations with monotone continuous

operators, Nonlinear Analysis: Theory, Methods and Appl., 70,

(2009), 4307–4315. (with N.S. Hoang)

[555.] Attractors of strongly dissipative systems, Bull. Polish Acad of Sci.

Mathem., 57, N1, (2009), 25–31.



402 Curriculum Vitae of Alexander G. Ramm

[556.] Symmetry problems 2, Annal. Polon. Math., 96, N1, (2009), 61–64.

(with N.S. Hoang)

[557.] Slow invariant manifolds for dissipative systems, J. Math. Phys., 50,

N1, (2009), 042701.

[558.] A nonlinear inequality and applications, Nonlinear Analysis: Theory,

Methods and Appl., 71, (2009), 2744–2752. (with N.S. Hoang)

[559.] Numerical solution of many-body wave scattering problem for small

particles, Proc. DIPED-2009, Lviv, Ukraine, Sept. 21–24, (2009),

pp. 77–81. (with M. Andriychuk)

[560.] A singular integral equation for electromagnetic wave scattering,

Internat. Journ. Pure and Appl. Math., 55, N4, (2009), 7–11.

[561.] Boundary integral equation for electromagnetic wave scattering by

a homogeneous body of arbitrary shape, Intern. Journ. Pure and

Appl. Math., 55, N4, (2009), 13–16.

[562.] Inverse scattering with non-overdetermined data, Phys. Lett. A,

373, (2009), 2988–2991.

[563.] A collocation method for solving integral equations, Internat. Journ.

Comp. Sci and Math., 3, N2, (2009), 222–228.

[564.] Creating desired potentials by embedding small inhomogeneities,

J. Math. Phys., 50, N12, 123525, (2009).

[565.] Dynamical Systems Method for solving ill-conditioned linear alge-

braic systems, Internat. Journ. Comp. Sci. Math. (IJCSM), 2, N4,

(2009), 308–333. (with S. Indratno)

[566.] Property C for ODE and applications to an inverse problem for a

heat equation, Bull. Polish Acad of Sci. Mathem., 57, N3–4, (2009),

243–249.

[567.] An iterative method for solving Fredholm integral equations of the

first kind, Internat. Journ. Comp. Sci. Math. (IJCSM), 2, N4,

(2009), 354–379. (with S. Indratno)

[568.] Existence of solution to an evolution equation and a justification of

the DSM for equations with monotone operators, Comm. Math. Sci.,

7, N4, (2009), 1073–1079. (with N.S. Hoang)

[569.] Inversion of the Laplace transform from the real axis using an adap-

tive iterative method, Internat. Jour. Math. Math. Sci (IJMMS),

Vol. 2009, Article 898195, 38 pages; doi:10.1155/2009/898195 (with

S. Indratno)

[570.] Asymptotic stability of solutions to abstract differential equations,

Journ. of Abstract Diff. Equations and Applications (JADEA), 1,

N1, (2010), 27–34.



Curriculum Vitae of Alexander G. Ramm 403

[571.] How to prepare materials with a desired refraction coefficient, Pro-

ceedings of ISCMII and EPMESCXII, AIP Conference Proceedings

1233, (2010), pp. 165–168.

[572.] Dynamical systems gradient method for solving ill-conditioned linear

algebraic systems, Acta Applic. Math., 111, N2, (2010), 189–204.

(with N.S. Hoang)

[573.] Collocation method for solving some integral equations of estimation

theory, Internat. Journ. of Pure and Appl. Math., 62, N1, (2010),

57–65.

[574.] Dynamical systems method for solving nonlinear equations with

monotone operators, Math. of Comput., 79, 269, (2010), 239–258.

(with N.S. Hoang)

[575.] Implicit Function Theorem via the DSM, Nonlinear Analysis: The-

ory, Methods and Appl., 72, N3–4, (2010), 1916–1921.

[576.] Inverse problem for a heat equation with piecewise-constant conduc-

tivity, J. Appl. Math and Informatics (JAMI), 28, N3–4, (2010),

551–561. (with S. Gutman)

[577.] The Dynamical Systems Method for solving nonlinear equations with

monotone operators, Asian Europ. Math. Journ., 3, N1, (2010),

57–105. (with N.S. Hoang)

[578.] Dynamical Systems Method (DSM) for solving equations with mono-

tone operators without smoothness assumptions on F ′(u), J. Math.

Anal. Appl., 367, N2, (2010), 508–515. (with N.S. Hoang)

[579.] Slow manifolds for dissipative dynamical systems J. Math. Anal.

Appl., 363, (2010), 729–732.

[580.] Scattering by many small particles and creating materials with a

desired refraction coefficient, International Journ. Comp. Sci. and

Math. (IJCSM), 3, N1/2, (2010), 102–121. (with M. Andriychuk)

[581.] Electromagnetic wave scattering by many small particles and creat-

ing materials with a desired permeability, Progress in Electromag.

Research, M, 14, (2010), 193–206.

[582.] On a new notion of the solution to an ill-posed problem, J. Comp.

Appl. Math., 234, (2010), 3326–3331.

[583.] Creating materials with a desired refraction coefficient: numerical

experiments, International Journ. Comp. Sci. and Math. (IJCSM),

3, N1/2, (2010), 76–101. (with S. Indratno)

[584.] Uniqueness theorem for inverse scattering problem with non-

overdetermined data, J. Phys. A, FTC, 43, (2010), 112001.



404 Curriculum Vitae of Alexander G. Ramm

[585.] DSM of Newton-type for solving operator equations F (u) = f with

minimal smoothness assumptions on F , International Journ. Comp.

Sci. and Math. (IJCSM), 3, N1/2, (2010), 3–55. (with N. Hoang)

[586.] Electromagnetic wave scattering by many small bodies and creating

materials with a desired refraction coefficient, Progress in Electro-

magnetic Research M (PIER M), 13, (2010), 203–215.

[587.] A nonlinear inequality and evolution problems, Journ, Ineq. and

Special Funct., (JIASF), 1, N1, (2010), 1–9.

[588.] Numerical modeling in wave scattering problem for small particles,

Proc. of MIKON-2010, 18-th Internat. Conf. on microwave radar

and wireless communications, Geozandas Ltd, Vilnius, Lithuania,

2010, pp. 224–227. (with M. Andriychuk)

[589.] Uniqueness of the solution to inverse scattering problem with

backscattering data, Eurasian Math. Journ (EMJ), 1, N3, (2010),

97–111.

open access Journal.

[590.] A method for creating materials with a desired refraction coefficient,

Internat. Journ. Mod. Phys B, 24, 27, (2010), 5261–5268.

[591.] Materials with a desired refraction coefficient can be created by

embedding small particles into a given material, International Jour-

nal of Structural Changes in Solids (IJSCS), 2, N2, (2010), 17–23.

[592.] Electromagnetic wave scattering by a thin layer in which many small

particles are embedded, Progress in Electromagnetic Research Let-

ters (PIER L), 19, (2010), 147–154.

[593.] A theorem on entire functions, Rev Roum Math Pure Appl., 55, N6,

(2010), 515–519.

[594.] Justification of the Dynamical Systems Method (DSM) for global

homeomorphisms, Eurasian Math. Journ (EMJ), 1, N4, (2010),

116–123.

[595.] Wave scattering by many small bodies and creating materials with

a desired refraction coefficient, Afrika Matematika, 22, N1, (2011),

33–55.

[596.] Nonlinear differential inequality, Mathematical Inequalities and

Applications (MIA), 14, N4, (2011), 967–976. (with N. Hoang)

[597.] Scattering by many small inhomogeneities and applications, In the

book “Topics in Chaotic Systems: Selected Papers from Chaos 2010

International Conference”, Editors C. Skiadas, I. Dimotikalis, Char.

Skiadas, World Sci. Publishing, 2011. pp. 41–52.



Curriculum Vitae of Alexander G. Ramm 405

[598.] Electromagnetic wave scattering by a small impedance particle of

arbitrary shape, Optics Communications, 284, (2011), 3872–3877.

[599.] A collocation method for solving some integral equations in distri-

butions, Journal of Computational and Applied Mathematics, 236,

(2011), 1296–1313 (with S. Indratno)

[600.] Series that can be differentiated termwise m times if the function is

m-smooth, Mathematica Aeterna, 1, N3, (2011), 137–148.

[601.] On the DSM version of Newton’s method, Eurasian Math. Journ

(EMJ), 2, N3, (2011), 91–99.

[602.] Wave scattering by many small bodies and applications, J. Math.

Phys., 59, 023519, (2011) (with A. Rona)

[603.] Uniqueness of the solution to inverse scattering problem with scat-

tering data at a fixed direction of the incident wave, J. Math. Phys.,

52, 123506, (2011).

[604.] Some nonlinear inequalities and applications, Journ. of Abstract

Diff. Equations and Applications, 2, N1, (2011), 84–101 (with

N. Hoang)

[605.] Stability of solutions to some evolution problems, Chaotic Modeling

and Simulation (CMSIM), 1, (2011), 17–27.

[606.] How large is the class of operator equations solvable by a DSM

Newton-type method ? Appl. Math. Lett, 24, N6, (2011), 860–865.

[607.] Scattering of scalar waves by many small particles, AIP Advances,

1, 022135, (2011).

[608.] Uniqueness of the solution to inverse scattering problem with non-

overdetermined data, Proceedings of the International Conference on

Inverse Problems in Engineering, May 4–6, 2011, Orlando, Florida,

USA, vol. 5, (2011), pp. 281–286.

[609.] Numerical solution of many-body wave scattering problem for small

particles and creating materials with desired refraction coefficient,

Chapter in the book:

“Numerical Simulations of Physical and Engineering Processes”,

InTech., Vienna, 2011, pp. 1–28. (edited by Jan Awrejcewicz)

ISBN 978-953-307-620-1 (with M. I. Andriychuk)

available online http://www.intechopen.com/articles/show/title/nu

merical-solution-of-many-body-wave-scattering-p

[610.] Scattering of electromagnetic waves by many thin cylinders, Results

in Physics, 1, N1, (2011), 13–16.

[611.] On the DSM Newton-type method, J. Appl. Math. and Comp.,

(JAMC), 38, N1–2, (2012), 523–533.

http://www.intechopen.com/articles/show/title/numerical-solution-of-many-body-wave-scattering-p
http://www.intechopen.com/articles/show/title/numerical-solution-of-many-body-wave-scattering-p


406 Curriculum Vitae of Alexander G. Ramm

[612.] Dynamical Systems Method and Applications. Theoreti-

cal Developments and Numerical Examples. Wiley, Hoboken,

2012, ISBN-13: 978-1-118-02428-7 (with N. S. Hoang)

[613.] Dynamical Systems Method (DSM) for solving nonlinear operator

equations in Banach spaces, Eurasian Math. Journ (EMJ), 3, N1,

(2012), 86–96.

[614.] Scattering of electromagnetic waves by many thin cylinders: the-

ory and computational modeling, Optics Communications, 285, N20,

(2012), 4019–4026. (with M. Andriychuk)

[615.] A variational principle and its applications, Internat. Journ. of Pure

Appl. Math., 77, N3, (2012), 309–313.

[616.] DSM for general nonlinear equations, Appl. Math. Lett., 25, (2012),

2009–2014.

[617.] Stability of solutions to abstract evolution equations with delay,

Journ. Math. Anal. Appl. (JMAA), 396, (2012), 523–527.

[618.] Electromagnetic wave scattering by a small impedance particle: the-

ory and modeling, Optics Communications, 285, (2012), 1684–1691.

(with M. Andriychuk and S. Indratno)

[619.] A problem in analysis, Analysis, 32, N2, (2012), 1001–1003.

[620.] Electromagnetic wave scattering by many small perfectly conducting

particles of an arbitrary shape, Optics Communications, 285, N18,

(2012), 3679–3683.

[621.] Large-time behavior of the weak solution to 3D Navier-Stokes equa-

tions, Appl. Math. Lett., 26, (2013), 252–257.

[622.] Convergence of time-dependent Turing structures to a stationary

solution, Acta Appl. Math., 123, N1, (2013), 31–42. (with

V. Volpert)

[623.] Inverse scattering problem for Maxwell equations, Math. Model.

Nat. Phenom., 8, N1, (2013), 200–206.

[624.] Heat transfer in a medium in which many small particles are embed-

ded, Math. Model. Nat. Phenom., 8, N1, (2013), 193–199.

[625.] Spectral properties of Schrödinger-type operators and large-time

behavior of the solutions to the corresponding wave equation, Math.

Model. Nat. Phenom., 8, N1, (2013), 207–214.

[626.] Symmetry problem, Proc. Amer. Math. Soc., 141, N2, (2013),

515–521.

[627.] Stability result for abstract evolution problems, Math. Meth. Appl.

Sci., 36(4), (2013), 422–426.



Curriculum Vitae of Alexander G. Ramm 407

[628.] Electromagnetic wave scattering by small impedance particles of an

arbitrary shape, J. Appl. Math and Comput., (JAMC), 43, N1,

(2013), 427–444.

DOI: 10.1007/s12190-013-0671-3

[629.] The Pompeiu problem, Global Journ. of Math. Analysis (GJMA),

1, N1, (2013), 1–10.

Open access Journal: http://www.sciencepubco.com/index.php/GJ

MA/issue/current

[630.] A variational principle and its application to estimating electrical

capacitance of a perfect conductor, Amer. Math. Monthly, 120 (8),

(2013), 747–751.

[631.] Stability of the solutions to evolution problems, Mathematics, 1,

(2013), 46–64.

doi:10.3390/math1020046

Open access Journal: http://www.mdpi.com/journal/mathematics

[632.] Many-body wave scattering problems in the case of small scatterers,

J. of Appl. Math and Comput., (JAMC), 41, N1, (2013), 473–500.

[633.] Wave scattering by many small bodies: transmission boundary con-

ditions, Reports on Math. Physics, 71, N3, (2013), 279–290.

[634.] Scattering of electromagnetic waves by many nano-wires, Mathemat-

ics, 1, (2013), 89–99.

doi: 10.3390/math1030089.

Open access Journal: http://www.mdpi.com/journal/mathematics

[635.] Scattering of Acoustic and Electromagnetic Waves by Small

Bodies of Arbitrary Shapes. Applications to Creating New

Engineered Materials, Momentum Press, New York, 2013.

[636.] Asymptotic of some integral, Analysis, 33, (2013), 377–382.

[637.] Electromagnetic wave scattering by a small impedance body of

an arbitrary shape, Proceedings of the XIX-th International semi-

nar/workshop on direct and inverse problems of electromagnetic and

acoustic wave theory (DIPED-2014), Tbilisi, Georgia, Sept. 22–25,

2014, plenary talk, IEEE, pp. 9–11.

[638.] Calculation of electromagnetic wave scattering by a small impedance

particle of an arbitrary shape, Math. Meth. in Natur. Phenomena

(MMNP), 9, N5, (2014), 254–269. (with M. Andriychuk)

[639.] Inverse scattering with under-determined scattering data, Math.

Meth. in Natur. Phenomena, (MMNP), 9, N5, (2014), 244–253.

[640.] Recovery of the potential from I-function, Reports on Math. Phys.,

(ROMP), 74, N2, (2014), 135–143.

http://www.sciencepubco.com/index.php/GJMA/issue/current
http://www.sciencepubco.com/index.php/GJMA/issue/current
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/journal/mathematics


408 Curriculum Vitae of Alexander G. Ramm

[641.] Application of the asymptotic solution to EM wave scattering prob-

lem to creating medium with a prescribed permeability, Journ Appl.

Math. and Computing, (JAMC), 45, (2014), 461–485. (With M.

Andriychuk)

doi: 10.1007/s12190-013-0732-7

[642.] Electromagnetic wave scattering by small impedance particles of an

arbitrary shape and applications, Challenges, 5, (2014), 35–42.

doi:10.3390/challe5010035

Open access Journal: http://www.mdpi.com/journal/challenges

[643.] Electromagnetic wave scattering by small perfectly conducting par-

ticles and applications, J. Math. Phys., 55, 083505, (2014).

[644.] Creating media with prescribed permeability using the asymptotic

solution to EM wave scattering problem, Mikon-2014, Gdansk,

Poland, vol. 1, (2014), pp. 356–359. (with M. Andriychuk)

[645.] A symmetry result for strictly convex domains, Analysis, 35 (1),

(2015), 29–32.

[646.] Existence and uniqueness of the global solution to the Navier-Stokes

equations, Applied Math. Letters, 49, (2015), 7–11.

DOI: http://dx.doi.org/10.1016/j.aml.2015.04.008

http://authors.elsevier.com/sd/article/S0893965915001445

http://authors.elsevier.com/a/1R1KV3BGwepX9b (link to down-

load)

[647.] Representation of vector fields, Global Jour. Mathematical Analysis

(GJMA), 3 (2) (2015) 73–76.

open access: www.sciencepubco.com/index.php/GJMA; http://

www.sciencepubco.com/index.php/GJMA/article/view/4577 doi:

10.14419/gjma.v3i2.4577

[648.] Inverse scattering on the half-line revisited, Reports on Math. Phys.

(ROMP), 76, N2, (2015), 159–169.

[649.] A fast algorithm for solving scalar wave scattering problem by billions

of particles, Jour. of Algorithms and Optimization, 3, N1, (2015),

1–13. (with N. Tran)

Open access: http://www.academicpub.org/jao/Issue.aspx?Abstr=

false

[650.] When are the zero-energy solutions to the Schrödinger equation

bounded at infinity? Jour. Math. Sci.: Advances and Applications

(JMSAA), 33, (2015), 1–4.

Open access: http://scientificadvances.co.in

http://www.mdpi.com/journal/challenges
http://dx.doi.org/10.1016/j.aml.2015.04.008
http://authors.elsevier.com/sd/article/S0893965915001445
http://authors.elsevier.com/a/1R1KV3BGwepX9b
www.sciencepubco.com/index.php/GJMA
http://www.sciencepubco.com/index.php/GJMA/article/view/4577
http://www.sciencepubco.com/index.php/GJMA/article/view/4577
http://www.academicpub.org/jao/Issue.aspx?Abstr=false
http://www.academicpub.org/jao/Issue.aspx?Abstr=false
http://scientificadvances.co.in


Curriculum Vitae of Alexander G. Ramm 409

[651.] Existence of the solution to electromagnetic wave scattering problem

for an impedance body of an arbitrary shape, Applied Math. Lett.,

41, (2015), 52–55. (with M. Schechter)

[652.] Scattering of EM waves by many small perfectly conducting or

impedance bodies, J. Math. Phys. (JMP), 56, N9, 091901, (2015).

[653.] A short proof of the existence of the solution to elliptic boundary

problems, Global Journ. of Mathem. Analysis (GJMA), 3, issue 3,

(2015), 105–108.

Open access: http://www.sciencepubco.com/index.php/GJMA/arti

cle/view/4731 doi: 10.14419/gjma.v3i3.4731

[654.] EM wave scattering by many small impedance particles and appli-

cations to materials science, The Open Optics Journal, 9, (2015),

14–17

Open access: http://benthamopen.com/TOOPTSJ/VOLUME/9/

[655.] Creating materials in which heat propagates along a line, Boll Union.

Math. Ital. (BUMI), 8, N3, (2015), 165–168. published Sep.8, (2015)

online DOI 10.1007/s40574-015-0033-1

[656.] Representation of big data by dimension reduction, Fundamental

Journ. of Math. and Math. Sciences, 4, N1, (2015), 23–34. (with

Cong Van)

[657.] Large-time behavior of solutions to evolution equations, Handbook

of Applications of Chaos Theory, Chapman and Hall/CRC, 2016, pp.

183–200 (ed. C. Skiadas). ISBN 9781466590434-CAT# K20464

[658.] Integral equations and applications, Handbook of Applications of

Chaos Theory, Chapman and Hall/CRC, (ed. C. Skiadas), pp. 163–

182.

[659.] Antenna synthesis by the modulus of the diagram, Journal of

Advances in Applied Mathematics (JAAM), 1, N1, (2016), 1–11.

open access: http://www.isaac-scientific.org/images/PaperPDF/20

002 2015122115134414313.pdf (with M. Andriychuk)

[660.] Heat transfer in a complex medium, In the book “The Foundations

of Chaos Revisited:

From Poincare to Recent Advances”, Springer, 2016, pp. 119–136.

ISBN 978-3-319 29699-9 (print); 978-3-319 29701-9 (online)

[661.] Uniqueness of the solution to inverse obstacle scattering with non-

over-determined data, Appl. Math. Lett., 58, (2016), 81–86.

http://www.sciencepubco.com/index.php/GJMA/article/view/4731
http://www.sciencepubco.com/index.php/GJMA/article/view/4731
http://benthamopen.com/TOOPTSJ/VOLUME/9/
http://www.isaac-scientific.org/images/PaperPDF/20002_2015122115134414313.pdf
http://www.isaac-scientific.org/images/PaperPDF/20002_2015122115134414313.pdf


410 Curriculum Vitae of Alexander G. Ramm

[662.] A simple proof of the closed graph theorem, Global Journ. Math.

Anal. (GJMA), 4, N1, (2016), 1.

open access Journal. doi: 10.14419/gjma.v4i1.5534

[663.] Inverse obstacle scattering with non-over-determined data, 2016

International Conference on Mathematical Methods in Electromag-

netic Theory, pp. 85–88.

[664.] EM Wave Scattering on a Set of Small Particles and Creation of

Materials with Desired Refraction Coefficient and Magnetic Perme-

ability, 2016 International Conference on Mathematical Methods in

Electromagnetic Theory, pp. 410–413. (with M. I. Andriychuk)

[665.] Creating materials in which heat propagates along a line: theory and

numerical results, Pure and Applied Functional Analysis, (PAFA),

2, N4, (2017), 639–648. (with Cong Tuan Son Van)

Open access Journal

[666.] Solution to the Pompeiu problem and the related symmetry problem,

Appl. Math. Lett., 63, (2017), 28–33.

[667.] Inverse problems for parabolic equations with coefficient depending

on time, Engineering Science Letters (ESL), 1,(2017), 1–4.

Open access: http://esl.scik.org/a-g-ramm-inverse-problems-for-par

abolic-equations-with-coefficient-depending-on-time-2017-2017-artic

le-id-1-20-september-2017/

[668.] Global existence and estimates of the solutions to nonlinear integral

equations, Global Journal of Math. Analysis, 5(1), (2017), 19–20.

Open access: http://www.sciencepubco.com/index.php/GJMA/arti

cle/view/7306

[669.] A numerical method for solving 3D inverse scattering problem with

non-over-determined data, J. Pure Appl. Math., 1, N1, (2017), 1–3.

open access Journal

[670.] Scattering by obstacles and potentials, World Sci. Publ.,

Singapore, 2017.

[671.] On the denseness of the set of scattering amplitudes, International

Review of Physics, 11, N4, (2017), 96–98.

[672.] Perturbation of zero surfaces, Global Journal of Math. Analysis,

5(1), (2017), 27–28. http://www.sciencepubco.com/index.php/GJ

MA/article/view/7474

[673.] Global existence, uniqueness and estimates of the solution to the

Navier-Stokes equations, Appl. Math. Lett., 74, (2017), 154–160.

http://esl.scik.org/a-g-ramm-inverse-problems-for-parabolic-equations-with-coefficient-depending-on-time-2017-2017-article-id-1-20-september-2017/
http://esl.scik.org/a-g-ramm-inverse-problems-for-parabolic-equations-with-coefficient-depending-on-time-2017-2017-article-id-1-20-september-2017/
http://esl.scik.org/a-g-ramm-inverse-problems-for-parabolic-equations-with-coefficient-depending-on-time-2017-2017-article-id-1-20-september-2017/
http://www.sciencepubco.com/index.php/GJMA/article/view/7306
http://www.sciencepubco.com/index.php/GJMA/article/view/7306
http://www.sciencepubco.com/index.php/GJMA/article/view/7474
http://www.sciencepubco.com/index.php/GJMA/article/view/7474


Curriculum Vitae of Alexander G. Ramm 411

[674.] Creating materials with a desired refraction coefficient, IOP

Concise Physics, Morgan & Claypool Publishers, San Rafael, CA,

USA, 2017.

[675.] Completeness of the set eikβ·s, Global Journ. of Math. Analysis

(GJMA), 5(2), (2017), 43–44. https://www.sciencepubco.com/inde

x.php/GJMA/article/view/7975 doi: 10.14419/gjma.v5i2.7975

open access journal

[676.] Finding a method for producing small impedance particles with pre-

scribed boundary impedance is important, J. Phys. Res. Appl., 1:1,

(2017), 1–3.

open access Journal.

[677.] Existence of the solutions to convolution equations with distribu-

tional kernels, Global Journal of Math. Analysis, 6(1), (2018), 1–2.

open access Journal: https://www.sciencepubco.com/index.php/GJ

MA/article/view/8632/2983rs (ESL), (2018), 2018:2, 1–5.

[678.] On the importance of producing small impedance particles with pre-

scribed boundary impedance, Engineering Science Letters (ESL),

2018, 2018:2, 1–5.

[679.] Inverse problem of potential theory, Appl. Math. Lett., 77, (2018),

1–5.

[680.] A uniqueness theorem for inverse scattering problem with non-over-

determined data, Engineering Science Letters (ESL), 2018, 2018:3,

1–5.

[681.] Many-body wave scattering problems for small scatterers and cre-

ating materials with a desired refraction coefficient, in the book

“Mathematical Analysis and Applications: Selected Topics”, Wiley,

Hoboken NJ, 2018, Chapter 3, pp. 57–76. (ed. M. Ruzhansky,

H. Dutta, R. Agarwal)

[682.] Inverse obstacle scattering with non-over-determined data, Global

Journ. of Math. Anal. (GJMA), 6 (1), (2018), 2–6. https://www.s

ciencepubco.com/index.php/GJMA/article/view/8887

[683.] A numerical algorithm for solving 3D inverse scattering problem with

non-over-determined data, J. Appl. Math. Stat. App., 2, N1, (2018),

11–13. (with Cong Van)

open access Journal http://www.alliedacademies.org/journal-applie

d-mathematics-statistical-applications/inpress.php

[684.] Solution of the Navier-Stokes problem, Appl. Math. Lett., 87,

(2019), 160–164.

https://www.sciencepubco.com/index.php/GJMA/article/view/7975
https://www.sciencepubco.com/index.php/GJMA/article/view/7975
https://www.sciencepubco.com/index.php/GJMA/article/view/8632/2983rs
https://www.sciencepubco.com/index.php/GJMA/article/view/8632/2983rs
https://www.sciencepubco.com/index.php/GJMA/article/view/8887
https://www.sciencepubco.com/index.php/GJMA/article/view/8887
http://www.alliedacademies.org/journal-applied-mathematics-statistical-applications/inpress.php
http://www.alliedacademies.org/journal-applied-mathematics-statistical-applications/inpress.php


412 Curriculum Vitae of Alexander G. Ramm

[685.] Global existence and uniqueness of the solution to a nonlinear

parabolic equation, Journ. of Advances in Math., 14, N2, (2018),

pp. 1–4.

[686.] Estimates of solutions to nonlinear evolution equations, Journ of

Advances in Math., 14, N2, (2018), pp. 1–6.

[687.] Symmetry problem 1, Journ. of Adavances in Math. (JAM), 15,

(2018), 1–4.

[688.] Necessary and sufficient condition for a surface to be a sphere, Open

J. Math. Anal. (OMA), 2, (2018), issue 2, 51–52.

Open access: https://pisrt.org/psr-press/journals/oma/

[689.] Old symmetry problem revisited, Open Journ. Math. Analysis,

(OMA), 2, N2, (2018), 89–92.

[690.] Inverse scattering with non-over-determined data, Journ. of Adv-

ances in Math., 16 (2019), pp. 1–4.

[691.] Symmetry Problems. The Navier-Stokes Problem, Morgan

& Claypool Publishers, San Rafael, CA, 2019.

[692.] On the Navier-Stokes problem, Journ of Advances in Math., 16,

(2019), pp. 1–5. ISSN 2347-1921

Open access Journal.

[693.] Global existence of solutions to nonlinear Volterra integral equations,

Journal of Appl. Anal. (JAA), (2019), 45–47.

open access Journal

[694.] Symmetry problems for the Helmholtz equation, Appl. Math. Lett.,

96, (2019), 122–125. https://doi.org/10.1016/j.aml.2019.04.008

[695.] Inverse obstacle scattering with non-over-determined scat-

tering data, Morgan & Claypool Publishers, San Rafael, CA, 2019.

[696.] Global existence of solutions to differential equations, SEMA, 76,

(2019), 625–628. https://doi.org/10.1007/s40324-019-00199-6

[697.] Estimating the size of the scatterer, ROMP (Reports on Math.

Phys.), 85, N3, (2020), 331–334.

[698.] On a hyper-singular equation, Open Jour. of Math. Anal., 4(1),

(2020), 8–10. https://pisrt.org/psr-press/journals/oma

[699.] Creating materials with a desired refraction coefficient, IOP

Publishers, Bristol, UK, 2020 (Second edition).

[700.] Concerning the Navier-Stokes problem, Open J. Math. Anal.

(OMA), 4(2), (2020), 89–92.

Open access: https://pisrt.org/psr-press/journals/oma/

[701.] How can one create a material with a prescribed refraction coeffi-

cient? Sun Text Review of Material Science, 1:1, (2020), 102.

https://pisrt.org/psr-press/journals/oma/
https://doi.org/10.1016/j.aml.2019.04.008
https://doi.org/10.1007/s40324-019-00199-6
https://pisrt.org/psr-press/journals/oma
https://pisrt.org/psr-press/journals/oma/


Curriculum Vitae of Alexander G. Ramm 413

[702.] On hyper-singular integrals, Open Journal of Math. Analysis,

(OMA), 4(2), 2020, 101–103.

Open access: https://pisrt.org/psr-press/journals/oma/

[703.] Theory of hyper-singular integrals and its application to the Navier-

Stokes problem, Contrib. Math. 2, (2020), 47–54.

Open access Journal: www.shahindp.com/locate/cm; DOI: 10.

47443/cm.2020.0041

[704.] Navier-Stokes equations paradox, Reports on Math. Phys. (ROMP),

88, N1, (2021), 41–45.

[705.] Symmetry problems in harmonic analysis, SeMA, 78, N1, (2021),

155–158.

[706.] Stability of solutions to some abstract evolution equations with delay,

Contributions to Math., 3, (2021), 1–10. (with N. S. Hoang.)

open access: www.shahindp.com/locate/cm DOI: 10.47443/cm.2020.

0041

[707.] The Navier-Stokes problem, Morgan & Claypool publishers,

2021.

isbn 978163639243

[708.] Estimate of the size of a body from its scattering amplitude, Journal

of inequalities and special functions, 12, N2, (2021), 12–15. (with

N. S. Hoang.)

[709.] Symmetry problems for PDE, Symmetry, 2021, 13, 240.

open access http://doi.org/102290/sym13122240

[710.] Comments on the Navier-Stokes problem, Axioms, (2021), 10 (2), 95.

open access Journal, https://doi.org/10.3390/axioms10020095

[711.] Some symmetry results for PDE, J. Math. Stat. Res., 3, (2021), N3,

pp. 1–2.

open access DOI: https://doi.org/10.36266/JMSR/152

[712.] Stability of solutions to nonlinear evolution problems, Bull. of Math.

Anal. and Appl., 14, N1, (2022), 28–30.

[713.] Wave scattering by many small bodies and creating materials with

a desired refraction coefficient, Univ. Journ. of Laser, Optics, Pho-

tonics and Censors, 2, N1, (2022), 62–73.

[714.] Wave scattering by many small impedance particles and applications,

Reports on Math. Phys., (ROMP), 90, N2, (2022), 193–202.

[715.] On hyper-singular multidimensional equations, Far East Journal of

Theoretical and Applied Sciences, Volume 1, 2022, Pages 1–4.

Open access, http://www.pphmj.com/journals/fjtas.htm

http://dx.doi.org/10.17654/TAS2022001

https://pisrt.org/psr-press/journals/oma/
www.shahindp.com/locate/cm
www.shahindp.com/locate/cm
http://doi.org/102290/sym13122240
https://doi.org/10.3390/axioms10020095
https://doi.org/10.36266/JMSR/152
http://www.pphmj.com/journals/fjtas.htm
http://dx.doi.org/10.17654/TAS2022001


414 Curriculum Vitae of Alexander G. Ramm

[716.] Applications of analytic continuation to tables of integral transforms

and some integral equations with hyper-singular kernels, Open Jour-

nal of Optimization, (2022), 11, 1–6.

www.scirp.org/journal/ojop

[717.] Dirichlet problem with L1(S) boundary values, Axioms, 2022, 11,

371.

Open access, https://doi.org/10.3390/axioms11080371

[718.] When does a double-layer potential equal to a single-layer one?,

Axioms, 7 (10), 19287–19291.

Open access, https://doi.org/10.3390/axioms

[719.] Is creating materials with a desired refraction cofficient practi-

cally possible? Characterization and Application of Nanomaterials,

(2023), vol. 6, N1, 1–5.

Open access Journal

[720.] Boundary values of analytic functions, Far East Journal of Appl.

Math., 116, N3, (2023), 215–227.

http://dx.doi.org/10.17654/0972096023011

[721.] A counterexample related to the Navier-Stokes problem, Far East

Journal of Appl. Math., 116, N3, (2023), 229–236.

[722.] Analysis of the Navier-Stokes problem. Solution of a Mil-

lennium Problem, Springer, 2023.

isbn 978-3-031-30722-5

[723.] Wave scattering by small bodies. Creating materials with a

desired refraction coefficient and other applications, World

Sci. Publishers, Singapore, 2023.

[724.] New definition of singular integral operator, Annals of Communica-

tions in Mathematics, Volume 6, N4, (2023), 220–224

ISSN: 2582-0818 c© http://www.technoskypub.com

[725.] The Navier-Stokes problem. Solution of a millennium problem

related to the Navier-Stokes equations, Modern Mathematical Meth-

ods, 2 (2024), No. 1, pp. 19–26.

https://modernmathmeth.com/

[726.] Distributional boundary values of analytic functions, Annals of Com-

munications in Mathematics, Volume 7, N1, (2024), 42–46.

open access

[727.] On the Laplace transform, Journ Appl. Analysis, 2024; 30(2): 209–

213.

[728.] Solution to some hypersingular integral equations, Journ. of Math-

ematics and Statistics, 20, N1, (2024), 45–18.

open access

www.scirp.org/journal/ojop
https://doi.org/10.3390/axioms11080371
https://doi.org/10.3390/axioms
http://dx.doi.org/10.17654/0972096023011
http://www.technoskypub.com
https://modernmathmeth.com/


Curriculum Vitae of Alexander G. Ramm 415

[729.] Dirichlet problem with L1(S) boundary values, Annals of Commu-

nications in Mathematics, Volume 7, N2, (2024), 108–113.

open access

[730.] Absence of positive eigenvalues of the Laplacian in domains with infi-

nite boundaries, Annals of Communications in Mathematics, Volume

7, N3, (2024), 264–266.

open access

[731.] Solution to the millennium problem related to the Navier-Stokes

equations, Lobachevskii Journal of Mathematics, 2024, Vol. 45, No.

8, 3726–3735.

[732.] Inverse obstacle scattering with non-overdetermined data, Annals

of Communications in Mathematics, Volume 7, N3, (2024), 252–

253.

[733.] On the Riemann problem, Annals of Communications in Mathemat-

ics, Volume 7, N4, (2024), 451–454.

open access

[734.] Materials with a desired refraction coefficient, Annals of Communi-

cations in Mathematics, 8, N1, (2025), 38–42.

open access

[735.] Study of nonlinear PDE with power nonlinearities, Open J. of Math.

Anal., 9, N1, (2025), 11–13.

open access

[736.] Singular Integral Equations on a Set of Distributions, Journ. Comp

Pure Appl Math, 3(1):1-03. doi: https://doi.org/10.33790/cpam110

0113.

open access

[737.] Uniqueness and non-uniqueness of the Radon transform, Poincare

Journal of Analysis and Applications, Vol. 12, No. 1, (2025), 1–5.

open access: DOI: 10.46753/pjaa.2025.v012i02.001

[738.] Non-uniqueness of the solution to inverse scattering problem by many

small scatterers, J. all Phys. Research and Appl, 1, N2, (2025),

pp. 1–2.

open access

[739.] Nonlinear elliptic problems, Australian J. Math and Anal., 22, N1,

(2025), Art. 11.

[740.] On the Fourier series,

open access

[741.] Numerical solution to inverse scattering problem, Jour. Comp. Pure

Appl. Math., 3, N1, (2025), 1–5.

open access

https://doi.org/10.33790/cpam1100113
https://doi.org/10.33790/cpam1100113


416 Curriculum Vitae of Alexander G. Ramm

[742.] Uniqueness result for a system of PDE, Ann. Math and Phys., 8,

N2, (2025), 071–072.

open access

[743.] Wave-focusing materials, All Physics Research Appl., 1, N2, (2025),

1–2.

open access

[744.] Finding mass distribution from the exterior potential, Annals of

Communications in Mathematics, 8, N2, (2025), 184–187.

open access

[745.] A uniqueness result for a coupled system of elliptic PDE, Ann. Math.

and Phys., 8, N2, (2025), 071-972.

open access https://dx.doi.org./10.17352/amp.000148

https://dx.doi.org./10.17352/amp.000148


Brief Description of the Work
of Alexander G. Ramm

The work of Alexander G. Ramm can be divided into several areas:

(1) PDE, ODE and integral equations,

(2) spectral and scattering theory for differential operators, especially for

the Schrödinger operators,

(3) static problems and wave scattering by small bodies of arbitrary

shapes,

(4) random fields estimation theory,

(5) nonlinear passive systems,

(6) inverse scattering problems,

(7) theoretical numerical analysis and ill-posed problems,

(8) non-selfadjoint operators and their applications in scattering theory,

(9) signal and image processing,

(10) local tomography,

(11) mathematical geophysics,

(12) electromagnetic theory and mathematical physics,

(13) creating materials with a desired refraction coefficient,

(14) symmetry problems for PDE,

(15) the Navier-Stokes problem in R3,

(16) integral equations with hyper-singular kernels.

The breadth and volume of the work do not allow one to describe the

work in detail. Therefore only the highlights will be mentioned.

(1) In a long series of papers starting with papers 3–7, 11, 118, 144, 190,

670, 730, (the numbers cited are from Alexander G. Ramm (AR)

list of publications), a thorough study of the spectral properties and

eigenfunction expansions is given for the first time for Schrödinger

417
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operators in domains with infinite boundaries; a sufficient condition is

given on the infinite boundary for the Schrödinger operators to have

no positive eigenvalues on the continuous spectrum.

(2) Iterative methods are developed for solving interior and exterior

boundary value problems for Laplace’s equation, analytic formulas

for the S-matrix for acoustic and electromagnetic wave scattering by

small bodies of arbitrary shapes are derived and applied successfully

to numerical and physical problems (see monograph 144, 612);

(3) analytic theory of random fields estimation is developed (monographs

246, 486), which is an original detailed study of a new class of multidi-

mensional integral equations basic in estimation theory. No results of

this type have been known. Many results known for one-dimensional

estimation theory are very particular cases of the general theory devel-

oped in the monograph 486. The theory has many application in sig-

nal processing, and in geophysics in particular. Monograph 246 was

translated into Russian by MIR publishing house in 1996.

(4) In the pioneering papers 72 and 80 (also 125, 128, 137, 142) the math-

ematical foundations of the EEM and SEM methods are given. These

methods are now very popular in electrical engineering sciences.

This research was supported by AFOSR from 1979 till 1983;

(5) A thorough study of existence, global stability and calculation of the

stationary regimes in passive nonlinear systems is given in paper 129.

The results are optimal as shown by examples.

(6) A deep study of inverse scattering problems is given in a long series

of papers( see monographs 190, 313, 470, 670 and papers 252, 425,

460, where a summary of some of the author’s results is given. In

papers 584, 589, 603, and in monograph 670 the problem which has

been open for many decades is solved: uniqueness of the solution to

the basic non-over-determined inverse scattering problems is proved

by the author.

Exact inversion of the low-frequency scattering data is given in the

monographs 190, 670.

A powerful method, Property C method, based on the notion of

completeness of the set of products of solutions of PDE is developed

and applied to many important inverse problems, 407, 470, 670. In

these works several problems are solved which have been open for

decades. For example, the first global uniqueness theorems in geo-

physics and potential scattering with fixed-energy data are obtained,

the first mathematically justified method for solving the 3D inverse
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scattering problem with noisy fixed-energy data is given. and for the

first time stability estimates for the solution to the inverse scattering

problem with noisy fixed-energy data are obtained, 313, 470, 670.

The first variational principle for solving inverse scattering prob-

lems which is equivalent to the inverse problems was found; this work

is published as a monograph 313, which is an expanded version of

monograph 278, translated into Russian in 1994. In paper 393 a fun-

damentally new uniqueness theorem is obtained: it says that a com-

pactly supported real-valued square-integrable spherically symmetric

potential is uniquely defined by any part of the fixed-energy phase

shifts with the angular momenta j running through an arbitrary set

J of non-negative integers such that
∑

j∈J,j �=0
1
j = ∞.

Property C is defined and proved for ordinary differential equations

(ODE) and its many new applications are demonstrated. Most of

the known results for one-dimensional inverse problems are obtained

by using this property, and many new results (387, 402, 470, 670).

Among the classical results which are obtained by using property C

for ODE are Marchenko and Borg’s uniqueness theorems concerning

recovery of the potential from two spectra (Borg) and from scattering

data or spectral function (Marchenko).

Inverse problems for an inhomogeneous Schrödinger equation are

studied for the first time (391, 413), a non-over-determined three-

dimensional inverse problem of recovery of a potential from the diag-

onal values of the spectral function known on the boundary of a

bounded domain and all real values of the spectral parameter is con-

sidered and a uniqueness theorem is proved for this problem (412).

A new approximate method for solving the inverse scattering prob-

lem with fixed energy data is given for a spherically symmetric poten-

tials which are known for r > a but unknown for r < a, where a > 0 is

an arbitrary large fixed number (394). Numerical results are obtained

by this method (400).

Krein’s method in inverse scattering is justified and its consistency

is proved for the first time, (405).

Analytical theory is given for inversion of the surface scattering data

in the ground-penetrating radar problem for two functions: permittiv-

ity and conductivity of the ground, under the assumption that these

functions depend on the vertical coordinate only (367, 380, 398).

A method for recovery of a quarkonium system from experimental

data is developed (375).
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Inverse problem of finding point scatterers from the surface scatter-

ing data is posed and solved (395, 411).

For the first time uniqueness theorems are proved for three-

dimensional scattering problems with non-overdetermined data

(papers 562, 584, 589, 603).

Stability of the Pompeiu property is established (363) and further

results are obtined (382, 535). A complete solution to the Pompeiu

problem, a proof of the Schiffer’s conjecture and a general result on

the symmetry problem for the Helmholtz equation are obtained in the

monograph (691) and numerous papers of the author on this topic.

First results on symmetry properties for harmonic analysis are in

paper 705. In paper 709 many of the author’s symmetry results for

PDE are derived.

In a series of papers, starting with (506 and cited in the monographs

635 and 699 a method for constructing “smart materials” is given. It

is proved that one can distribute small particles in a bounded domain

so that the resulting material has a desired refraction coefficient or

the a priori chosen radiation pattern (wave-focusing property).

In paper 632 theory of scalar wave scattering by one and many

small bodies of an arbitrary shape is developed for various boundary

conditions (Dirichlet, Neumann, impedance, transmission). In paper

628 theory of EM (electromagnetic) wave scattering by one and many

small impedance bodies of an arbitrary shape is developed. Methods

for creating materials with a desired refraction coefficient are given on

the basis of the above theory. These results and their generalizations

are presented in monographs 635, 674, 699.

(7) Mathematical justification of the widely used T-matrix approach in

scattering theory is given (monograph 190).

In a series of papers (starting with 506 and cited in the monographs

635 and 699) several ill-posed problems are investigated. In particular,

the now widely used stable differentiation procedure based on the

regularization by the choice of the step size in the divided difference

formula has been introduced for the first time in paper 32.

The important feature of this and my other works on ill-posed

problems is the error estimates with explicitly written estimation

constants.

A theory for the stable solution of a class of the Fredholm equations

at a characteristic value is constructed in several papers and presented

systematically in the monograph 144. This theory was a basis for the
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theory of wave scattering by small bodies of arbitrary shapes in this

monograph.

Numerical methods were given for solving integral equations of esti-

mation theory in distributions. This theory is summarized in the

monograph 246. The basis of it is a theory, developed by the author,

of a class of multidimensional integral equations whose kernels are

kernels of positive rational functions of arbitrary self-adjoint elliptic

operators.

In a series of papers (452, 454, 456, 457, 469, 485, 491, 500–502,

522, 525, 539, 542–545, 549–550, 554, 567, 574, 575, 579, 581), some

of which are joint with Ramm’s Ph.D students, and in monographs

499, 612, a general method, Dynamical Systems Method, (DSM), for

treating linear and, especially, nonlinear ill-posed problems by solving

a suitable Cauchy problem in a Hilbert space was developed. Con-

vergence theorems are proved. Discretization of the Cauchy problem

leads to a variety of iterative methods for solving ill-posed nonlinear

problems and convergence theorems for these methods are obtained.

In monograph 612 these results are illustrated by numerical examples.

A novel approach to solving exterior and interior boundary value prob-

lems and scattering problems, based on the theorem, proved by A.G.

Ramm and called by him Modified Rayleigh Conjecture (MRC), has

been developed and tested numerically (papers 430, 461, 475, 481,

493).

(8) The theory of weakly non-selfadjoint operators was applied to scat-

tering theory (50, 72, 80). For the first time completeness of the set

of root vectors of some non-selfadjoint integral operators arising in

diffraction and scattering theory was proved. This gave a mathemati-

cal justification of the EEM (eigenmode expansion method), a popular

method in electrical engineering;

(9) A.G. Ramm (jointly with his Ph.D student A. Katsevich) developed

new methods in signal and image processing, edge detection, local

tomography; a very general test of randomness against fairly broad

alternatives is found and justified mathematically (348).

New methods were developed for finding jumps of functions from

local tomographic data. These methods turned to be practically

important.

These results were tested numerically and practically and

demonstrated their effectiveness. Monograph (348) contained these

results.
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Two patents (5,539,800 of July 23, 1996 and 5,550,892 of Aug.

27, 1996) have been issued by the US Patent Office to A.G. Ramm

and A.I. Katsevich “Enhanced local tomography” and “Pseudolocal

tomography”.

(10) A systematical study of the singularities of the Radon transform is

given, a complete description of the asymptotics of the Radon trans-

form near a point of its singular support is obtained and applied to the

important problem of tomography: finding singularities of a function

from its tomographis data; these results are published in a series of

papers and appeared in the monograph 348, see also paper 414.

(11) The basic uniqueness theorems for model inverse problems of geo-

physics have been proved, examples of non-uniqueness were con-

structed, the theory of inversion of low-frequency data has been

developed (monographs 190, 278 and 670).

(12) Theoretical investigation of a number of antenna synthesis problems,

including a non-linear synthesis problems have been investigated.

Degree of non-uniqueness of the solution to the general synthesis

problem has been described (monograph 118, 167). There are many

other results of various nature and in different branches of mathe-

matics (general relativity, asymptotics of the spectra of linear opera-

tors and quadratic forms, approximation theory, variational estimates

of capacitances and polarizabilities, methods for calculation of reso-

nances in open systems and quantum mechanics, perturbation theory

for resonances, impedance tomography, singular perturbation of inte-

gral equations, quantum chaos, etc. The characteristic features of the

works is a systematic usage of functional analysis and classical analy-

sis,numerical methods, PDE, physics and theoretical engineering and

their combinations. Broad interests made it possible to interact with

mathematicians and engineers with quite diverse interests.

(13) In 2007–2025 A.G. Ramm has published a series of papers (506–511,

513–516, 518–520, 523, 533, 536, 537, 540, 552, 553, 564, 590, 595, 597,

622, 632, 634, 649, 652, 654, 655, 660,719, 734, 743, and in monographs

635, 674, 699, 723) in which he has developed a method for creating

materials with a desired refraction coefficient. This method is based

on Ramm’s solution to many-body scattering problem by many small

particles embedded in an inhomogeneous medium. The refraction

coefficient can be created so that the new material has a desired wave-

focusing property, or it may have a negative refraction property, which
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means that the group velocity in this material is directed opposite to

the phase velocity. These results are presented in monographs 635

and 699. The important new mathematical problem (on which this

theory is based) is the many-body wave scattering problem for small

bodies. AGR solved this problem asymptotically, as a→ 0 under the

assumption a � d � λ. Here a is the characteristic size of a small

body, d is the minimal distance between neighboring bodies, and λ

is the wavelength. The multiple scattering is essential under these

assumptions. The a can be as small as 20nm. These results will be

immediately applicable practically if small impedance particles with

a desired refraction coefficient can be produced in practice. Using

this theory AGR gave a recipe for creating materials with a

desired refraction coefficient.

(14) In 2017–2019 A.G. Ramm was working on symmetry problems for

PDE. His new results, including the proof of the Schiffer’s conjec-

ture and a solution to the Pompeiu problem are presented in the

monograph 691, papers 694, 705, 709, and the author’s papers cited

there.

(15) A.G. Ramm has solved the millennium Navier-Stokes problem

in R3. His solution is published in papers 704, 725, 731, and in

monographs 707 and 722. He proved that the Navier-Stokes problem

(NSP) is contradictory and has no solution.

This follows from the NSP paradox, proved by A.G. Ramm in

paper 704 and in the monographs 707, 722).

NSP paradox: if the initial data v(x, 0) �≡ 0, the solution to the NSP

exists for all t > 0 and the exterior force f = 0, then v(x, 0) = 0.

(16) In 2017–2019 A.G. Ramm has proved for the first time uniqueness of

the solution to the inverse scattering problem for compactly supported

potentials and non-over-determined scattering data. These results are

published in monograph 670 and in the author’s papers cited there, in

particular, in 584, 589, 603. His theory includes a proof of uniqueness

of the solution to inverse obstacle scattering problem with non-over-

determined data. These results are presented in papers 682, 690 and

in monograph 670, 695.

(17) In 2018–2022 A.G. Ramm has developed a theory for solving convolu-

tion integral equations with hyper-singular kernels. These results are

presented in papers 698, 715, 716, 728, 736, and in the monographs

707 and 722.
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Prof. Ramm is elected a member of Electromagnetic Academy,

MIT, (June 1990), a member of New York Academy of Science, he is

an associated editor of many professional Journals.

He received many other honors.

Ramm has directed 11 Ph.D students, some of them are now pro-

fessors at various Universities.

His research has been supported by AFOSR, NSF, ONR, NATO,

USIEF, Fulbright committee, SERC of Canada and United Kingdom,

DFG, Research Councils of Italy and many Universities in Europe,

and Asia.

He was a guest of Academia Sinica in Taipei, Beijing, Shanghai

and Hefei, of Indian Institute of Science in Bangalore, of Royal Insti-

tute of Technology (Sweden), of the Universities of Bonn, Heidelberg,

Stuttgart, London, Manchester, Leicester, Paris, Florence, Rome,

Madrid, Göteborg, Uppsala, Marcel, Novosibirsk, Milan, Cagliari,

University of Mexico UNAM, University of Grenoble, Technion in

Haifa, Tokyo Metropolitan University, Kyoto University, and gave lec-

tures at many other Universities throughout the world.

A.G. Ramm worked as a research consultant for Los Alamos

National Laboratory, oil industries and electronics industries. In 1997

he was awarded a Commerce Bank distinguished graduate faculty

member research award.

Professor A.G. Ramm was an invited Distinguished Foreigh Profes-

sor of the Academy of Science of Mexico in October 1997 and gave

lectures at UAM and UNAM in Mexico City. He was distinguished for-

eign professor at the University of Cairo in 2004 and 2006, Mercator

Professor at TU Darmstadt in 2007, Invited Plenary Speaker at 7-

th PACOM in 2009, Distinguished Visiting Professor invited by Royal

Acad. of Engineering UK in 2009, Visiting Professor at IMPAN, 2010,

MPI (Max Planck Institute) in 2011, Beijing Institute of Technology

(BIT) in 2013. Fulbright Research Professor in Israel (Technion) in

1991–1992, in Ukraine (University of Lviv) in 2015.

Professor A.G. Ramm has taught a wide variety of various courses at

all levels. He worked with MS and Ph.D. students and has experience

in designing curriculum for courses in ODE, PDE, Applied functional

analysis and theoretical numerical analysis, Integral transforms and

applications, Tomography and the Radon transform, as well as the

standard calculus sequence. His lectures are well organized, clear, and

adjusted to the level of the audience.
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Professor A.G. Ramm had worked much with engineers both from

academia and industries and because of his broad knowledge of the

basic mathematical and physical sciences and theoretical electrical

engineering, he is able to communicate easily with engineers. He has

always supported close connections between the mathematics depart-

ment and engineering school, and was interested in developing the

relations with industries.

Ramm has received Distiguished Graduate faculty award (1996).

He has received Khwarizmi Intenational Prize for mathematical

research (2004).

Ramm was a Distinguished Visiting professor supported by the UK

Royal Academy of Engineering in Sep.–Oct. 2009. He was a Mercator

Professor in 2007, Distinguished HKSTAM speaker (2005), London

Math. Society speaker (2005), research CNRS professor in France

(2003), Distinguished Visiting Professor at the University of Cairo

(2004), (2006), CNRS Professor (2003), Distinguished Foreign Profes-

sor at the Academy of Science of Mexico (1997).
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